With Low (mu> data Lepton (non)-universality data in W decays in ATLAS

Daniil Ponomarenko

MEPhl@ATLAS group meeting, 06-November-2020

00

- $\,\circ\,$ We have most precise measurement to date from the Top group
 - $R(\tau/\mu)=0.992 \pm 0.013 [\pm 0.007(stat) \pm 0.011(syst)]$
- The goal is to measure the W branching ratio in pp and search for lepton non-universality in ATLAS in direct W decays
 - $\circ~$ We have very large statistics for W decay at ATLAS
 - Excellent possibility to test SM and lepton universality
 - $\,\circ\,\,$ The aim of this measurement is to achieve $\mathcal{O}(1.5\%)$ error

Ongoing ATLAS analysis

• Run1: Standard Model group analysis

- Luminosity 4.6 fb^{-1}
- $\circ~$ Final states analysed: $W \to \tau_{lep} \nu \to \ell \nu \nu$ and $W \to \ell \nu$
- Major analysis features:
 - $\,\circ\,\,$ Displacement of the au decay helps to distinguish leptons from au decays from prompt leptons
 - Analysis based on previous W mass measurement analysis
- Status: Work in progress

• Run2: Standard Model group low mu analysis - this talk

- Luminosity 340 pb^{-1}
- $\circ~$ Final states analysed: $W \to \tau_{lep} \nu \to \ell \nu \nu$ and $W \to \ell \nu$
- Major analysis features:
 - $\circ~$ Displacement of the au decay helps to distinguish leptons from au decays from prompt leptons
 - 2D fit on d_0 and (*BDT* output or m_T) leading lepton distributions
 - Analysis statistical power around 1%
- Status: Work in progress

• Run2: Top group effort - PUBLISHED

- Luminosity 147 fb^{-1}
- Final states analysed: di-leptonic $t\bar{t}$ decays
- Major analysis features:
 - $\circ~$ Displacement of the τ decay helps to distinguish leptons from τ decays from prompt leptons
 - $\,\circ\,\,$ Tag lepton to trigger on and probe lepton to go for a lower p_T range
- Result: 0.9923 +/- 0.0131 [+/-0.0072 (stat) +/- 0.0110 (syst)]

Analysis organization

- Previous status report: 06.05.2020
- E-group: <u>atlas-phys-stdm-wbr-lowmu-analysis-team@cern.ch</u>
- Jira: <u>https://its.cern.ch/jira/browse/ATLASSMWBRLOWMU-1</u>
 - Main page to hold all documentation and workflow
- o Git: <u>https://gitlab.cern.ch/atlas-wbr-lowmu</u>
- Storage: /eos/user/s/smwbr/LowMu/
- Main efforts:
 - General analysis supervision: Nicolo
 - Common SW: Daniil
 - Mini/Micro tuples production: Daniil
 - SR selection optimization: Daniil
 - d0 corrections and studies: JJ
 - MJ estimation: Daniil
 - TMVA studies: Grigorii
 - Systematics: Daniil

Software organization

WBR SR configuration

 For WBR analysis we are focused on soft part of mT spectra We are using d0 distribution as control variable vertexing cuts suppress our signal region we dropped vertexing cuts and TTVA SF 	SR <u>Vars</u> : d_0 and p_T (m_T) Exactly 1 lepton with: p_T >20, tightID, isoMedium E_T^{miss} >20 m_T >40 ptvarcone20/pt < 0.1	MJ <u>Vars</u> : p_T , m_T , E_T^{miss} , $d\varphi$ Exactly 1 lepton with: p_T >20,, tightID&!isoMedium E_T^{miss} >20 m_T >40 ptvarcone20/pt > 0.1 && sliced
 Relax kinematics variables: pT > 20 GeV limited by available trigger SF and MJ contribution mT > 40 GeV Suppress MJ background MET > 20 GeV to keep consistency with other low mu analysis groups 	CR1 <u>Vars</u> : p_T , m_T , E_T^{miss} , $d\varphi$ Exactly 1 lepton with: p_T >20, tightID, isoMedium E_T^{miss} >0 m_T >0 ptvarcone20/pt < 0.1	CR2 <u>Vars</u> : p_T , m_T , E_T^{miss} , $d\varphi$ Exactly 1 lepton with: p_T >20, tightID&! isoMedium E_T^{miss} >0 m_T >0 ptvarcone20/pt > 0.1 && sliced
 NJ, CR1, CR2 are used for NJ background estimation: Same algorithm as in <u>ATL-COM-PHYS-2019-076</u> ZR and ZttR for d₀ studies and corrections 	ZR <u>Vars</u> : M_{ll} , d_0 tightID, isoMedium 2 leptons p_T >20, OS, SF, $66 < M_{ll} < 116$	ZttR <u>Vars</u> : d_0 tightID, isoMedium 2 leptons p_T >20, OS, OF, M_{ll} <85

Control plots: SR and ZR

- Have some discrepancies for pT and MET variables: critical for TMVA classification
- $\,\circ\,$ The d0 shows same bias / resolution structure for SR and ZR
- PowhegPythia8EvtGen_AZNLOCTEQ6L1

Cross check with pTWanalysis

MJ Introduction

• Algorithm is same as in <u>ATL-COM-PHYS-2019-076</u>

MJ Background Estimation

- The shape of MJ background
- The total number of MJ background

• A data-driven method

• Reverse two independent cuts and 3 control region (CR)

$$\frac{N_{CR3}}{N_{CR1}} = \frac{N_{SR}^{BKG}}{N_{CR2}}$$

- Here we can do the calculation bin-by-bin and get both the shape and the total number of MJ background
- We can take other BKG into the consideration, so we have

$$T = \frac{N_{CR3}^{Data} - N_{CR3}^{EWBKG}}{N_{CR1}^{Data} - N_{CR1}^{EWBKG}} = \frac{N_{SR}^{MJBKG}}{N_{CR2}^{Data} - N_{CR2}^{EWBKG}}$$

MJ Introduction

$$T = \frac{N_{CR3}^{Data} - N_{CR3}^{EWBKG}}{N_{CR1}^{Data} - N_{CR1}^{EWBKG}} = \frac{N_{SR}^{MJBKG}}{N_{CR2}^{Data} - N_{CR2}^{EWBKG}}$$

Strategy

- For FR and CR1, both M_T and E_T^{miss} cuts are removed
- \circ Additional u_T cut for CR1 and FR to suppress jet activity
 - $u_T < [15, 20, 30, 10000]$
- Choose 6 different slices of CR, with different isolation region
 - [0.1,0.15,0.2,0.25, 0.3,0.35,0.4]
- A parameter fitting is used instead of the direct calculation to get the parameter T • $N_{FR}^{Data} = \alpha N_{FR}^{EW BKG} + T (N_{CR1}^{Data} - N_{CR1}^{EW BKG})$
- α is also a parameter in the fitting, but it should be close to 1 within the uncertainty • Extrapolate $N_{SR}^{MJ BKG} = T (N_{CR1}^{Data} - N_{CR1}^{EW BKG})$ by a linear relationship to 0

Isolation Correction on the Recoil Measurement

Lepton removal in the recoil measurement

- Excluding a cone of $\Delta R = 0.2$ around the selected leptons
- \circ Replaced by a same size cone in the same η but away from lepton or the hard activity

For leptons which is anti-isolated, it is close to the hard activity

- This replacement approach fails
- The difference is fixed by a isolation correction

 $u_T = u_{base} + u_{iso}$ $u_{iso} = ptcone20 * n_l$

• *ptcone* 20 is used to correct the hard activity in the cone which is originally removed.

• *ptvarcone*20 is the isolation WP we are using now

° This correction is now applied to all the anti-isolated leptons

(Validation pTWanalysis) FR first slice for W->numu+

Figure 7.17: Multi-jet background template fits performed in distributions of p_T^e (top), MET (middle) and m_T (bottom) with the MJ template obtained from isolation slice 0.10<ptvarcone20/pt<0.20. The fits are presented We reproduce plots from the note! - DATA Entries/GeV - DATA 0 ATLAS Internal ATLAS Internal $\square W \rightarrow \mu^* \nu$ ATLAS Internal 220 200 180 $W \rightarrow \mu^* v$ MultiJet $W \rightarrow \mu^* v$ MultiJet Z MultiJet 100 $W \rightarrow \mu^* \nu$ FIT TEMPLATE $W \to \mu^* \nu \text{ FIT TEMPLATE}$ Z W→tv Diboson TOP $W \rightarrow \mu^* \nu$ FIT TEMPLATE Z W → tv Diboson TOP Entrie 20000 13TeV, 340 pb 13TeV, 340 pb $W \rightarrow \tau v$ Diboson TOP 13TeV, 340 pb Small difference comes from miniTrees 60000 160 140 120 100 80 40 40 20 production versions 50000 April2019 -> March2020 40000 30000 Have additional variable for extrapolation 0 20000 10000 30 40 muon p^T[GeV] m_⊤[GeV] E^{miss}[GeV] <u>×10³</u> >0.12 9 0.12 Events/0.197 9.0 9.0 ≥0.25 0 1GeV ATLAS Work in Progress ATLAS Work in Progress ATLAS Work in Progress Data: N = 1421279.0 W r: N = 25775.3, f = 1.8%, SF = 0.997 +/- 0.020 W u: N = 1182878.8, f = 83.3%, SF = 0.997 +/- 0 ATLAS Work in Progre 80 ut. N = 1421238.0 r: N = 25835.0, f = 1.8%, SF = 0.999 +/- 0.0 u: N = 1195910.1 f = 92.2%, SF = 0.999 +/- 0.0 0.34 fb⁻¹, s = 13 TeV 0.34 fb⁻¹, s = 13 Te C.34 ID , 12 ... Relaxed cuts: E^{mist}_γ >25 GeV & M_γ(W)>50 GeV - √χ²/NDoF = 1.87 ∾ 0.2E $E_{\gamma}^{miss} > 25 \text{ GeV & M}_{\gamma}(W) > 50 \text{ GeV}$ $\sqrt{\chi^2/NDoF} = 2.05$ Events/ -Events/ $E_{\gamma}^{mias} > 25 \text{ GeV & M}_{\gamma} (W) > 50 \text{ GeV}$ $\sqrt{\chi^2/NDoF} = 1.98$ 0.8 $\frac{m^{max}}{r} > 25 \text{ GeV & M}_r (W) > 50 \text{ GeV}$ $\frac{v^2}{NDoE} = 1.88$ 20.08 60 10.00E 40 Bonus 0 0.4 0.04F 20 0.05 0.2 0.02 Data / Model 8.0 8.0 Data / Model Data / Model 8.0 Data / Model 1 8.0 20 40 60 80 100 0 20 40 60 80 100 50 100 150 200 Λ $lep_0 p_{\tau} [GeV]$ Et [GeV] $\Delta \phi$ (lep_-MET) m^w_T [GeV]

(Validation pTWanalysis) Fine scans

- $^\circ$ The error bars are multiplied by $\sqrt{x^2/ndf}$
- We calculate yield and yield's error as weighted average:
 - same approach as been used in early Run2 paper

Extrapolation point	at 0 %	at 5 %
Wplusmunu	8605 +/- 224 (+/-2.6%)	9258 +/- 270 (+/-2.92%)
Wminusmunu	7820 +/- 218 (+/-2.8%)	8566 +/- 265 (+/-3.09%)

INT Note at 0% $n_{\rm MJ}^{\mu +} = 9044 \pm 796,$ $n_{\rm MJ}^{\mu -} = 9053 \pm 617$

(Validation pTWanalysis) Multi-jet shape extraction

(Validation) FR degradation over isolation slices scan (1)

0.1 < 0.15

(Validation) FR degradation over isolation slices scan (2)

Data / Model

MJ estimation in WBR analysis

The d0: introduction

• We define 3 types of tau decays

- **prompt** (*W*) leptons are leptons produced in $W \rightarrow l\nu$ decays
- $\circ~$ tau are leptons produced in the leptonic decay chain $W \to \tau \nu \to l \nu$
- **prompt** (non W) are leptons from Z^0 or other EWK process where these leptons do not originate from W decays: for example di-boson, single top or $t\bar{t}$ process.
- fake are reconstructed leptons from all other sources, including wrongly identified leptons.

• IBL alignment problem:

- bias and mismatching data/MC d0 resolution
- Needs to be fixed, and validated (next slides)

$^\circ\,$ No d0 and/or $z_0\,$ cuts

Lot of bad reconstructed vertexes and cosmic background

• We derive and apply d0 corrections for prompt and tau decays separately

Needs to take life-time into account

Performed as a function of pT and eta bins:

- $\,\circ\,$ 27 kinematic bins in total for prompt ightarrow use ZR as control region
- $\,\circ\,$ 8 kinematic bins in total for tau $\,\rightarrow\,$ use ZttR as control region

Assume that d0 distribution is a Gaussian

• The d0 tails has not-Gaussian nature!

The d0: corrections

Strategy

- Take clean ZR region for prompt leptons
 - Slice to 27 kinematic bins in total
 - $\,{}^\circ$ Derive bias corrections \rightarrow
 - apply directly to the Data SR
 - \circ Derive Data/MC resolution corrections ightarrow
 - apply to the <u>SR prompt MC samples</u>
- To take tau lifetime into account use ZttR for leptons originated from tau decays
 - Slice to 8 kinematic bins in total
 - $\,\circ\,$ Derive Data/MC resolution corrections $\rightarrow\,$
 - apply to the <u>SR tau MC samples</u>
- Resolution corrections on per event basis:

$$F^{\ell}(d_0) = \sum_{i=0}^{9} \sum_{j=0}^{2} \left(\bar{d}_{0ij}(MC) + (d_0 - \bar{d}_{0ij}(MC)) * \frac{\sigma_{ij}(RD)}{\sigma_{ij}(MC)} \right)$$

where $\bar{d}_{0ij}(MC)$ stands for mean value of d_0 distribution in Monte Carlo

$n_k = n_{p_T} + 9 * n_r$
• 9 p_T^μ bins
[20-25), [25-30), [30-35), [35-40), [40,45), [45, 50), [50,65), [65-80), [80-250)
• 3 η^{μ} bins • [0, 0.8), [0.8, 1.5), [1.5, 2.5)

$$n_k = n_{p_T} + 4 * n_\eta$$

• 4 p_T^{μ} bins	2 η^{μ} bins
[20, 25), [25, 35), [35,45), [45, 250)	• [0, 1.0), [1.0, 2.5)
Correction from Ztt derived from lep_0 (muo	n) only, and apply to lep_0 only. (lep_1 is electron)

The d0 studies in ZR

 \circ No d0 and/or z_0 cuts

• Lot of bad reconstructed vertexes and cosmic background on the tails

 $n_k = n_{p_T} + 9 * n_\eta$

The d0 studies in ZttR

• $4 p_T^{\mu}$ bins • [20, 25), [25, 35), [35,45), [45, 250) • Correction from Ztt derived from lep_0 (muon) only, and apply to lep_0 only. (lep_1 is electron)

- 2k events vs. ~270k in Top analysis for Run2 data
- No d0 and/or z_0 cuts
 - Lot of bad reconstructed vertexes and cosmic background on the tails

Appling d0 corrections to SR • $9 p_T^{\mu}$ bins • $[20-25), [25-30), [30-35), [35-40), [40,45), [45, 50), [50,65), [65-80), [80-250] \\ \times 10^{-3}$ • $3 \eta^{\mu}$ bins • [0, 0.8), [0.8, 1.5), [1.5, 2.5]

The d0 studies: extended range

Correction derived from an approximation of a Gaussian. Only the core where most of the events are, were corrected.

Not enough MC in region beyond the red box in both Zmm CR and Ztt CR.

The d0 tails in extended range

|d0 lep1|>0.2 [mm] *ATLAS* Work in Progress 340 pb⁻¹, γs = 13 TeV ZR 1GeV 10^{3} Events/ Low <u>> Run2 10^{2} 10 Data / Model 1.5 0.5 0 70 80 100 90 110 M_{μμ} [GeV] _ **ATLAS** Work in Progress 340 pb⁻¹, √s = 13 TeV − ZR 10⁷ 10⁶ Z→µµ (506644.67 : [99 Top (2723.35 : [0.53%]) 0.02 on (1133.53 Z→ TT (389.14 : [0.07%] Low <µ>Run2 → UV (129.61 : 10 Events/ 10² 10 10⁻¹ 10⁻² Data / Model .5 0.5 Կե 0.2 0.4 0.6 0.8 $lep_{0,1} |\Delta z_0 * sin(\theta)| [mm]$

|d0_lep0|>0.2 [mm] && |d0_lep1|>0.2 [mm]

- $\,\circ\,$ We see perfect Z peak in the d0 tails in ZR
- For SR we verified that difference comes not from MJ background
- Next steps:
 - $\,\circ\,$ investigate cuts |z0sin(theta)| < 0.3 and | d_0 |<0.5
 - look at the track/vertex fit related variables to see if there is any handle we can use

Another approach?

- The Top group analysis used template method
- For prompt leptons:
 - $\circ\,$ Determine shape of |d0| in 27 kinematical bins from data using $Z \to \mu\mu$ selection
 - subtract remaining backgrounds estimated in MC
 - use shapes as prompt muon templates in signal region
 - residual resolution correction from data
 - Systematic uncertainty due to application of |d0| shape from Z boson decays to $t\bar{t}$ -signal region
 - $\,\circ\,$ estimated by ratio of |d0| between $t \bar{t}$ and $Z \rightarrow \mu \mu$

• For leptons produced in tau-lepton decays

- Use templates from the "tau" MC sources in the SR
- Apply resolution correction only
- Check of Impact parameter of τ -decays leptons with $Z \rightarrow \tau \tau$ region
- We have small ZttR statistics:
 - 2k events vs. ~270k in Top analysis for Run2 data
 - It would be hard to make same validation with ZttR

$p_{\rm T}$ bin number $(n_{p_{\rm T}})$	$p_{\rm T}$ range (GeV)	$p_{\rm T}$ bin number $(n_{p_{\rm T}})$	$p_{\rm T}$ range (GeV)
0	5 - 10	6	40 - 50
1	10 – 15	7	50 - 65
2	15 - 20	8	65 – 100
3	20 - 25	9	100 - 250
4	25 - 30	10	> 250
5	30-40		
$ \eta $ bin number (i	$(\eta_{\eta}) \eta $ range	_1	1 2
0	0-0.8	$F^{pr}(d_0) - \sum$	$\sum \sum r^{pr} F^{pr}$
1	0.8 – 1.5	$(u_0) = Z$	ĹĹĹ'ij [™] ij (
2	1.5 – 2.5	i=	=0 j=0
-			

 $\sigma_{ij}^{sm} = \sqrt{\left|\sigma_{ij}^{2}(RD) - \sigma_{ij}^{2}(MC)\right|} \quad \text{After random smearing:} \\ \delta_{ij}(d_0) = f_{ij}^{sm}(d_0) - f_{ij}^{ns}(d_0).$

If $\sigma_i(RD) > \sigma_i(MC)$, $F_{ij}^{\tau}(d_0) = f_{ij}^{ns}(d_0) + \delta_{ij}(d_0) = f_{ij}^{sm}(d_0)$. If $\sigma_{ij}(RD) < \sigma_{ij}(MC)$, $F_{ij}^{\tau}(d_0) = f_{ij}^{ns}(d_0) - \delta_{ij}(d_0)$

$$F^{\tau}(d_0) = \sum_{i=0}^{11} \sum_{j=0}^{2} r_{ij}^{\tau} F_{ij}^{\tau}(d_0).$$

Asimov data: 2D hist [mT x |d0|] and fit construction

Asimov data: Fit breakdown

$\mu_{SIG} = 1.0000 \pm_{0.0115}^{0.0115} (stat) \pm_{0.0352}^{0.0355} (syst) \pm_{0.0370}^{0.0373} (total)$

Syst group	Impact	
Gammas	0.0373273	₩ 1.0000 _{-0.0021} mu_2
MJ	0.0364023	STAT • 1.0000 ^{0.0006} _{-0.0006} mu_W
NormFactors	0.0239989	
lumi	0.0374435	0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
mulso_STAT	0.0116341	
mulso_SYS	-nan	
muReco_STAT	0.0206442	μ 1.0000 _{-0.0033} mu_2
muReco_SYS	0.00414479	TOTAL 1.0000 0.0020 mu_W
muTrig_STAT	0.0219416	
muTrig_SYS	0.0131252	0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

Conclusions

MJ extraction method is implemented

- Validated using pTWanalysis supporting note
- Working in contact with *atlas-phys-sm-W-analyses* MJ team
- Looking for new variables to suppress MJ in the SR : ptcone40 and MMBS

d0 correction procedure for low-<mu> data doesn't work

- Better d0 resolution in Data rather then in MC
- Derive corrections from ZR for prompt leptons
- Could not derive corrections ZttR for "tau"-leptons
 - Will try same approach as for Top analysis
 - Needs to develop proper validation procedure (using ZttR ?)
- Problem with secondary vertexes could be fixed using vertex cuts

• Stat only error is 1.15%; total 3.7% (preliminary)

- Wrong lumi setup?
- Missing tree systematics and systematics for ZR
- Main sources for systematics errors for now are: MJ method, triggerSF and isoSF
- TMVA::BDT could potentially improve the fit
 - Need to fix Data/MC mismodelling

Thanks for attention!

Ongoing ATLAS analysis

• Run1: Standard Model group analysis

- Luminosity 4.6 fb^{-1}
- $\circ~$ Final states analysed: $W \to \tau_{lep} \nu \to \ell \nu \nu$ and $W \to \ell \nu$
- Major analysis features:
 - $\circ~$ Displacement of the τ decay helps to distinguish leptons from τ decays from prompt leptons
 - Analysis based on previous W mass measurement analysis
- Status: Work in progress

• Run2: Standard Model group analysis (this talk)

- Luminosity 147 fb^{-1}
- $\circ~$ Final states analysed: $W \to \tau_{lep} \nu \to \ell \nu \nu$ and $W \to \ell \nu$
- Major analysis features:
 - $\circ~$ Displacement of the au decay helps to distinguish leptons from au decays from prompt leptons
 - $\circ~$ 2D fit on d_0 and BDT output p_T leading lepton distributions
 - Analysis statistical power less then 1%
- Status: Work in progress

• Run2: Top group effort

- Luminosity 147 fb^{-1}
- Final states analysed: di-leptonic $t\bar{t}$ decays
- Major analysis features:
 - $\circ~$ Displacement of the τ decay helps to distinguish leptons from τ decays from prompt leptons
 - $\,\circ\,\,$ Tag lepton to trigger on and probe lepton to go for a lower p_T range
- Status: Blind Analysis Approval
- Total error on blinded fit to data is 1.37%

Data and MC samples for low <mu> analysis

Channel	Samples	
Wmu	mc16_13TeV.361101.PowhegPythia8EvtGen_AZNLOCTEQ6L1_Wplusmunu mc16_13TeV.361104.PowhegPythia8EvtGen_AZNLOCTEQ6L1_Wminusmunu	
We	mc16_13TeV.361100.PowhegPythia8EvtGen_AZNLOCTEQ6L1_Wplusenu mc16_13TeV.361103.PowhegPythia8EvtGen_AZNLOCTEQ6L1_Wminusenu	
Wtau	mc16_13TeV.361102.PowhegPythia8EvtGen_AZNLOCTEQ6L1_Wplustaunu mc16_13TeV.361105.PowhegPythia8EvtGen_AZNLOCTEQ6L1_Wminustaunu	
Zee	mc16_13TeV.361106.PowhegPythia8EvtGen_AZNLOCTEQ6L1_Zee	
Zmm	mc16_13TeV.361107.PowhegPythia8EvtGen_AZNLOCTEQ6L1_Zmumu	 Data 13 TeV (2017 and 2018)
Ztt	mc16_13TeV.361108.PowhegPythia8EvtGen_AZNLOCTEQ6L1_Ztautau	 March2020 production
DiBoson	mc16_13TeV.363356.Sherpa_221_NNPDF30NNLO_ZqqZll mc16_13TeV.363358.Sherpa_221_NNPDF30NNLO_WqqZll mc16_13TeV.363359.Sherpa_221_NNPDF30NNLO_WpqqWmlv mc16_13TeV.363489.Sherpa_221_NNPDF30NNLO_WlvZqq mc16_13TeV.364250.Sherpa_222_NNPDF30NNLO_IIII mc16_13TeV.364253.Sherpa_222_NNPDF30NNLO_IIIv mc16_13TeV.364254.Sherpa_222_NNPDF30NNLO_IIvv mc16_13TeV.364255.Sherpa_222_NNPDF30NNLO_Ivvv	
Тор	mc16_13TeV.410013.PowhegPythiaEvtGen_P2012_Wt_inclusive_top mc16_13TeV.410014.PowhegPythiaEvtGen_P2012_Wt_inclusive_antitop mc16_13TeV.410025.PowhegPythiaEvtGen_P2012_SingleTopSchan_noAllHad_top mc16_13TeV.410470.PhPy8EG_A14_ttbar_hdamp258p75_nonallhad	

Fit: muTrig sys shape

32

Fit: mulso sys shape

Fit: MJ template shape

Analysis strategy (full Run2)

• Use 2D [BDT + d0] fit for SR

 $^{\circ}$ The aim of the measurement is to achieve $\mathcal{O}(1.5\%)$ error

Event selection: full Run2

Year 2015	data15_13TeV.periodAll Trigger type Single electron - 2015 Single muon - 2015	Year_DetStatus HLT_e24_ll GRL /ertex Jets	GRL file s-v89-pro21-02_Unknown_PHYS_StandardGRL_All_Good_25ns Trigger name hmedium_L1EM20VH, HLT_e60_lhmedium, HLT_e1 HLT_mu20_iloose_L1MU15, HLT_mu50 Preselection Preselection See Table 1 > 3 associated tracks No <i>b</i> -tagged jets && no bad jets	<u>f L dt (fb⁻¹)</u> .xml 3.2 20_lhloose	SR Vars: d_0 and p_T (m_T) Exactly 1 lepton with: p_T >27, tightID, isoTight E_T^{miss} >25 m_T >40	$\begin{array}{c} \textbf{MJ} \\ \text{Vars: } p_T \ , m_T, E_T^{miss}, d\varphi \\ \text{Exactly 1 lepton with:} \\ p_T > 27, \text{looseID&!tightID,} \\ \text{isoLoose&!isoTight} \\ E_T^{miss} > 25 \\ m_T > 40 \end{array}$
	Ti Iso Ti Iso	Frigger pT η ID olation Frigger pT η ID olation	Lepton Selection - ElectronsSingle electron (see Table 2)> 27 GeV $ \eta < 2.47 \&\& (\eta < 1.37 \eta > 1.52)$ Tighttight isolationLepton Selection - MuonsSingle muon (see Table 2)> 27 GeV $ \eta < 2.4$ Tighttight isolation		CR1 Vars: p_T , m_T , E_T^{miss} , $d\varphi$ Exactly 1 lepton with: p_T >27, tightID, isoTight E_T^{miss} >0 m_T >0	CR2 Vars: p_T , m_T , E_T^{miss} , $d\varphi$ Exactly 1 lepton with: p_T >27, looseID&!tightID, isoLoose&!isoTight E_T^{miss} >0 m_T >0
	N N Mas	leptons OR E_T^{miss} m_T Boso leptons s window	Boson Selection - Wexactly 1Overlap removal between jets and leptons> 25 GeV and apply MET cleaning> 40 GeVon Selection - $Z \rightarrow \ell \ell$, where $\ell = e, \mu$ exactly 2, same flavor && oppositely charged66 GeV < $m_{\ell\ell}$ < 116 GeV	- - -	ZR Vars: M_{ll} , d_0 , p_T tightID, tightISO 2 leptons, OS, SF 66< M_{II} <116	ZRtt Vars: d ₀ <u>TBD</u>

Fit results for Run2, 2015 year: Asimov data

