Multijet strategy for W-Ai analysis

<u>Ruth Jacobs</u>, Ludovica Aperio Bella, Alexander Bachiu, Craig Wells Ai meeting, 09.11.20

Many slides from M. Boonekamps talk here (work also by T. Xu)

HELMHOLTZ RESEARCH FOR GRAND CHALLENGES

Reminder: Optimized WAi selection

- gained a lot of A_i sensitivity by relaxing cuts on MET or $m_{T,W}$ in our signal region
- but also a lot of background...

Reminder: Optimized WAi selection

Cut	Electron channel	Muon Channel
ID	Tight	Medium
lepton p _T	p⊤>25 GeV	p⊤>25 GeV
lepton eta	η < 2.4 (excluding gap η∈[1.37, 1.52]	η < 2.4
Isolation	ptvarcone20/p⊤ < 0.1 TopoETcone20/p⊤ < 0.05	ptvarcone20/p⊤ < 0.1 TopoETcone20/p⊤ < 0.05
Track IP	$ d_0 \text{ significance } < 5$ $ z_0 \sin\theta < 0.5$	$ d_0 \text{ significance } < 3$ $ z_0 \sin\theta < 0.5$

We now cut on two isolation variables (track- & calo-based), SF from Alex in place!

What do we actually need?

• our analysis goal: Measure A_i in template fit of angular variables $\cos\theta_{CS}$ and ϕ_{CS} \rightarrow need a 2D MJ template in [$\cos\theta_{CS}$, ϕ_{CS}] (in bins of p_{TW} and y)

 technically, need MJ shape only (A_i template fit could do the rest), but need norm for validation anyway → excellent cross-check!

MJ estimate in low-mu

solation

DESY.

ATL-COM-PHYS-2019-076

- p_t , E_t ^{miss}, m_T all carry discriminating power

5

MJ estimate in low-mu

ATL-COM-PHYS-2019-076

MJ Normalization:

- repeat MJ estimation for different anti-isolation slices (CR_i)
- fit linear function
- extrapolate back to the SR

MJ Template Shape:

- MJ distributions in CR_i don't match their SR counterparts
- bin-by bin linear shape extrapolation
- assign 100% uncertainty

$$\int_{[SR]}^{[SR]} = \int_{2}^{[CR1]} - \frac{1}{2} \left[\left(\int_{-1}^{[CR2]} \int_{-1}^{[CR2]} + \left(\int_{-1}^{[CR2]} \int_{-1}^{[CR3]} \right) \right]$$
$$\int_{2}^{[SR]} = \pm \frac{1}{2} \left[\left(\int_{-1}^{[CR1]} \int_{-1}^{[CR2]} + \left(\int_{-1}^{[CR2]} \int_{-1}^{[CR3]} \right) \right]$$

Recoil isolation correction

ATL-COM-PHYS-2019-076

Improved recoil calculation:

- recoil calculated from all Pflow objects in event
- cone of ΔR=0.2 around lepton excluded to prevent double-counting
- replace by random ΔR=0.2 cone in the event away from leptons or jets
- this is ok for isolated leptons...

...BUT...

- in MJ events leptons are mostly close to jets
- above method fails

Solution:

• instead of underlying-event-type cone, use isolation:

$$\vec{u}^{corr} = \vec{u}^{baseline} + \vec{u}^{iso}$$
, where
 $\vec{u}^{iso} \equiv ptcone20 \cdot \vec{n_{\ell}}$

What is different for WAi?

1) Selection

- relaxed cuts on MET or $m_{T,W}$ in our signal region
- cut on track-based isolation (ptvarcone20/pt<0.1)
 & calo-based isolation (TopoETcone20/p_T<0.05)

- cannot use our signal region directly to derive templates (dominated by signal modelling)
- define CR to extract MJ shape: i) relax both calo and track isolation

or ii) relax only calo isolation

- or iii) relax both
- define anti-isolation slices based on calo isolation and/or track isolation

DESY.

Anti-isolation slices for CR

• Options for relaxation/anti-isolation slicing to define CR:

Relax both track &	Slice calo isolation
calo isolation	Slice track isolation
Relax track isolation	Slice calo isolation
Relax calo isolation	Slice track isolation

• propose anti-isolation slices:

track-based: ptvarcone20/pt \in [0.1,0.2,0.3,0.4] calo-based: TopoETcone20/pt \in [0.05,0.15,0.25,0.35]

 \rightarrow ToDo: Check the MJ amount for different slices

Fitting the Normalization

- our fit region is the same as our signal region (we already relaxed kin. cuts)
- need to be careful that signal (& EW background) norm α is not shifted in our fit

What is different for WAi?

2) Angular Variables

- aim: multijet templates of ϕ_{CS} and $\cos\theta_{CS}$
- angular information in our MJ estimate to constrain angular behaviour \rightarrow additional MJ template variable $\Delta \phi$ (lepton, E_T^{miss})

What is different for WAi?

3) Analysis requirements:

- we need templates in bins of p_{T,W} and rapidity
- Ideally: show that MJ template shape for ϕ and $cos\theta$ is flat in bins of p_T and y
 - \rightarrow would mean we can use template shape derived in inclusive CR

(the case e.g. for Z-Ai)

Red – uT distribution obtained from the inclusive control region Blue – repeated MJ estimation procedure in uT bins \rightarrow Good agreement, no additional uncertainty

Summary

MJ in W-Ai analysis:

- relaxation of kinematic cuts and additional isolation requirements impact our multijet estimation strategy
- follow-mu MJ approach: iterative procedure using extrapolation from anti-isolation slices
- aim: φ and cos θ templates in bins of p_{TW} and $y \to A_i$ template fit machinery

Proposed strategy:

- CR: relax one or both isolation criteria, slice the other
- include angular template variable $\Delta \phi$ (lepton,MET)
- Fit Region = Signal Region
- analysis bins: ideally use template from inclusive CR in all bins

Next steps:

- study whether MJ shape in ϕ and $\cos\theta$ changes as function of p_{TW} or rapidity
- determine which iso slicing to use (check MJ amount in each configuration)
- technicalities (MJ fitting code, HistMaker modifications)

DESY.

small parenthesis $\Delta \phi$

DESY.