Федеральное государственное автономное образовательное учреждение высшего образования

«Национальный исследовательский ядерный университет «МИФИ»

Изучение эллиптического и треугольного потоков идентифицированных адронов в столкновениях ядер золота при энергиях $\sqrt{s_{\rm NN}}$ = 11.5 - 62.4 ГэВ в эксперименте STAR

Выполнил: студент гр. М19-115 Поваров А.С.

Научный руководитель: ст. преп. ООП ОЯФиТ Нигматкулов Г.А.

Москва - 2020г

Содержание

- Коллективные потоки на RHIC и LHC
- Эксперимент STAR
- Метод измерения коллективных потоков
- Результаты
- Заключение

Коллективные потоки на RHIC и LHC

v_n(**p_т, centrality)** - чувствителен к ранним стадиям столкновения.

Можно извлечь ограничения на транспортные свойства: EOS, η/s, ζ/s.

Массовое упорядочивание при p_T < 2 ГэВ/с (проявление радиального потока)

Барион/мезонное расщепление при p_т > 2 GeV/с ⇒ масштабирование на количество валентных кварков

Эксперимент STAR

Время-проекционная камера (ТРС):

- Регистрация заряженных частиц с |η| < 1, 0 < φ < 2π
- Для идентификации используется информация об удельных потерях энергии dE/dx

Времяпролетная система (TOF):

- |η| < 0.9, 0 < φ < 2π
- Идентификация по времени пролёта Наборы данных:

Au+Au, $\sqrt{s_{NN}}$ = 11.5 - 62.4 GeV

Метод измерения: Метод плоскости реакции (ЕР)

Использовался тот же метод, что и в Phys. Rev. C 88 (2013) 14902

$v_2(p_T)$ и $v_3(p_T)$ идентифицированных адронов

Масштабирование на количество валентных кварков

- Данное масштабирование было выполнено для v₂ и v₃ частиц и античастиц
- Лучше сохраняется для высоких энергий

Коллективные эффекты зарождаются на стадии деконфаймента кварков и глюонов

Заключение

Были представлены результаты v_2 , v_3 в столкновениях золота при $\sqrt{s_{NN}}\,$ = 11.5 - 62.4 ГэВ

($\sqrt{s_{NN}}$, centrality, PID, p_T)-зависимость для v_2 для v_3 :

- Наблюдаются массовое упорядочение при $p_{T} < 1.5$ GeV/с и барион/мезонное расщепление при $p_{T} > 2$ GeV/c
- Было выполнено масштабирование на количество валентных кварков, оно лучше сохраняется для более высоких энергий. Может интерпретироваться как признак того, что коллективные эффекты зарождаются на партонной стадии.

Запасные слайды

Коллективные потоки

Начальный эксцентриситет (и сопутствующие ему колебания) ε_n преобразуется в анизотропию импульса v_n

Восстановление плоскости события

Для измерения потоков используется метод плоскости события (Event Plane method).

В столкновениях плоскость реакции определяют направлением оси пучка и вектором прицельного параметра:

$$tg(n\Psi_n) = \frac{Q_{ny}}{Q_{nx}} = \frac{\sum_i \omega_i \sin(n\phi_i)}{\sum_i \omega_i \cos(n\phi_i)}$$
Peripheral Collision
(near) Central Collision

Poskanzer A.M., Voloshin S.A., Phys. Rev. C58, 1998, 1671-1678.

Отбор событий

Au+Au	Vz , см	Vr , см	Смещение по Vy, см	До отбора	После отбора
Run10 11.5 GeV	< 50	< 2	0.0	12M	10M
Run14 14.5 GeV	< 70	< 1	-0.89	28M	24M
Run11 19.6 GeV	< 70	< 2	0.0	25M	21M
Run10 27 GeV	< 70	< 2	0.0	74M	62M
Run18 27GeV	< 70	< 2	0.0	550M	460M
Run10 39 GeV	< 40	< 2	0.0	126M	105M
Run10 62.4 GeV	< 40	< 2	0.0	56M	47M

Отбор треков и идентифифкация частиц

Отбор треков:

- Первичные треки
- |η|<1
- DCA < 1 cm (π±,K±,p,p)
- Nhits > 15
- Nhits/NhitsPoss > 0.52

Идентификация заряженных частиц:

- dE/dx (TPC): |no| < 1.5 (для 27 GeV и 62.4 GeV)
- dE/dx (TPC): |no| < 3(для остальных)
- Идентификация по TOF:

 $egin{aligned} -0.15 < m_\pi^2 < 0.1 \ 0.2 < m_K^2 < 0.32 \ 0.74 < m_p^2 < 1.2 \end{aligned}$