МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ЯДЕРНЫЙ УНИВЕРСИТЕТ «МИФИ» (НИЯУ МИФИ)

УДК 539.1

ОТЧЕТ О НАУЧНО-ИССЛЕДОВАТЕЛЬСКОЙ РАБОТЕ ПО ТЕМЕ:

ИССЛЕДОВАНИЕ АЛЬФА-АКТИВНОСТИ В ДЕТЕКТОРЕ DEAP-3600

Научный руководитель Доц., к.ф.-м.н.

А.В.Гробов

Студент

М. А. Семичева

Москва 2020

Аннотация

Данная работа содержит основные результаты исследования α-активности в детекторе DEAP-3600. Во второй главе представлено описание устройства детектора и ожидаемые фоновые события. Также представлено распределение экспрериментальных данных α-распадов в рассматриваемой области и распределение, сгенерированное с помощью метода Монте-Карло в той же области событий. Применяемые критерии отбора для выделения интересующей области и количество событий, оставшихся после применения ограничений, представлены в конце второй главы. В третьей главе описан анализ экспериментальных данных, а именно результаты вычисления весов компонент, вносящих вклад в спектр ²¹⁰Po, и результаты вычисления величин, необходимых для расчета активности ²¹⁰Po. В результате данной работы была получена активность ²¹⁰Po в объеме и на поверхности детектора.

Annotation

This work contains the main results of the study of α -activity in the DEAP-3600 detector. The second chapter provides a description of the detector structure and expected background events. The distribution of experimental data in the control region and the distribution generated using the Monte Carlo method in the same region are also presented. The cuts applied to highlight the area of interest and the number of events remaining after application of the cuts are presented at the end of the second chapter. The third chapter describes the analysis of experimental data, namely, the results of calculating the weights of the components contributing to the ²¹⁰Po spectrum, and the results of calculating the values required to calculate the ²¹⁰Po activity. As a result of this work, the activity of ²¹⁰Po was obtained in the volume and on the surface of the detector.

Оглавление

1	Введение				
2 Эксперимент DEAP-3600			5		
	2.1	Устройство детектора	5		
	2.2 Ожидаемые фоновые события				
		2.2.1 Общее количество ожидаемых фоновых событий	9		
		2.2.2 Фоновые события от <i>α</i> -распадов ядер	9		
		2.2.3 Фоновые события от α -распадов ²¹⁰ Ро	10		
3	Ана	ализ экспериментальных данных	16		
	3.1	Вычисление активности	16		
	3.2	Вычисление весов компонент	18		
		3.2.1 Корреляции между весами компонент	20		
	3.3	Вероятности срабатывания триггеров	23		
	3.4	Коррекция наложений	23		
	3.5 Вычисление живого времени сбора данных				
	3.6	Активность	25		
4	4 Заключение				
$\mathbf{C}_{\mathbf{I}}$	Список использованных источников				

Глава 1

Введение

Проблема скрытой массы (СМ) во Вселенной остается одной из наиболее важных нерешенных задач в астрофизике и космологии. Исходя из космологической модели «Лямбда-CDМ» нерелятивистское вещество составляет ≈ 30% от общей плотности вещества во Вселенной, из которых только 5% – барионная материя, остальная же часть – несветящаяся форма материи, не описанная Стандартной Моделью [1]. Свидетельствами наличия СМ являются: изучение кривых вращения галактик (зависимость скорости вращения галактических объектов от расстояния до центра галактики), пространственные флуктуации реликтового микроволнового фона, проблема формирования крупномасштабной структуры Вселенной, гравитационное линзирование и другие. Не смотря на большое количество свидетельств существования СМ, она все еще не была обнаружена в наземных экспериментах по ее прямому поиску.

Многие теоретические модели предсказывают существование частиц со свойствами, соответствующими свойствам CM [2]. Одним из кандидатов на роль частиц CM является слабо взаимодействующая массивная частица WIMP (weakly interacting massive particle). Согласно этой модели упругое рассеяние WIMP на ядрах детектора производит низкоэнергетические (100кэВ) ядра отдачи. Текущие результаты экспериментов по прямому обнаружению поставили ограничение на спин-независимое сечение рассеяния WIMP-ов на ядре: его значение ожидается $< 9.0 \times 10^{-47}$ см² при энергиях 100 ГэВ/с² (при доверительном уровне 90%) [3].

Одним из ведущих экспериментов по поиску темной материи является эксперимент DEAP-3600. Коллаборация DEAP – это группа из более чем 65 исследователей из 18 учре-

ждений Канады, Великобритании, Мексики, Германии, Испании и России, разработавших один из самых чувствительных детекторов для прямого обнаружения темной материи.

Малую вероятность обнаружения столь редких низкоэнергетических сигналов предполагается компенсировать большой массой мишени и низким уровнем фоновых сигналов (менее 1 события на тонну вещества в год). Предыдущие экспериментальные результаты продемонстрировали эффективность использования жидкого аргона (LAr) для достижения данных условий [4]. Простота очистки, высокая эффективность сцинтилляций и прозрачность для собственного сцинтилляционного света делают его подходящим материалом для работы в качестве WIMP-детектора с массой в несколько тонн. Низкий уровень фона достигается благодаря расположению эксперимента. Детектор DEAP находится в глубокой подземной лаборатории SNOLAB (Садбери, Онтарио, Канада), которая использует двухкилометровый (6 км в водном эквиваленте) слой горной породы для фильтрации мюонов космических лучей, препятствующих обнаружению частиц WIMP.

Большая редкость искомого события делает отделение сигнала от фона одной из важнейших задач эксперимента. События, подобные сигналу от частиц WIMP, могут быть получены от различных источников фона, включающих: β - и γ -излучение в LAr и акриле, индуцированные нейтронами ядра отдачи в LAr, а также α -распады с поверхностей, контактирующих с LAr.

Данная работа посвящена исследованию α -активности в различных частях детектора. Главными целями работы стали:

- Выделение региона событий с α -распадами ²¹⁰Ро;
- Определение вклада различных компонент в общую активность ²¹⁰Ро;
- Вычисление величин, необходимых для расчета активности ²¹⁰Ро:
 - корреляций между весами компонент;
 - вероятностей срабатывания триггеров;
 - времени регистрации событий;
 - учет коррекции наложений;
- Вычисление активности ²¹⁰Ро в объеме и на поверхности детектора.

Глава 2

Эксперимент DEAP-3600

2.1 Устройство детектора

Схема поперечного сечения детектора DEAP-3600 показана на рисунке 2.1. Полная конструкция детектора подробно описана в [5].

Детектор расположен внутри водного резервуара (на рисунке не показан). Основная составляющая установки – ультрачистый жидкий аргон LAr, содержащийся в акриловом сосуде (AV) толщиной 5 см с поглотителем ультрафиолета (UVA) внутреннего диаметра 1,7м. Данный поглотитель выбран для подавления черенковского света, излучаемого в акриле. Верхние 30 см акрилового сосуда заполнены газообразным аргоном (GAr). Поверхность соприкосновения двух сред GAr/LAr расположена на 55 см выше экватора сосуда. Области газообразного и жидкого аргона просматриваются матрицей из 255 обращенных внутрь сферы фотомножителей (PMT) с низкой радиоактивностью Нататаtsu R5912 HQE диаметром 80 мкм. Характеристики этих PMT описаны в [6]. ФЭУ оптически связаны с акриловыми световодами (LGs) длиной 45 см, которые транспортируют видимые фотоны из акрилового сосуда к фотоумножителям. Объем между световодами заполнен чередующимися слоями полиэтилена высокой плотности и пенополистирола, которые обеспечивают пассивное экранирование нейтронов от компонентов детектора, таких как PMT.

Внутренняя поверхность акрилового сосуда покрыта слоем 1,1,4,4-тетрафенил-1,3бутадиена (TPB) толщиной 3 мкм, который преобразует сцинтилляционный свет с длиной волны 128 нм, генерируемый LAr, в свет в видимом диапазоне с длиной волны, максимум которой достигается при 420 нм. После прохождения TPB свет достигает акрилового

Рисунок 2.1 – Схема поперечного сечения детектора DEAP-3600

сосуда и световодов и далее попадает на поверхности ФЭУ. Эти соединенные со световодами ФЭУ обеспечивают 76% покрытия поверхности сосуда детектора. На поверхности резервуара имеется 11 различных «пятиугольных» областей с меньшим покрытием световодами: диаметр каждого меньше, чем диаметр LGs. За исключением этих пятиугольных областей, световоды равномерно покрывают внешнюю поверхность резервуара. Внешние поверхности между AV и LGs и между самими LGs соответственно покрыты диффузными отражателями Tyvek и Mylar для увеличения светосбора.

Сферическая симметрия объема детектора нарушается отверстием в верхней части AV, которое ведет к акриловой горловине и фланцу. Этот фланец соединен с более длинной горловиной с вакуумной рубашкой из нержавеющей стали, заканчивающейся в герметизированном боксе. Горловина содержит охлаждающую спираль из нержавеющей стали, заполненную жидким N₂ (LN₂), который конденсирует газообразный аргон во время наполнения и эксплуатации. Конденсированный жидкий аргон поступает в объем детектора, направляемый набором акриловых токопроводов (FGs), расположенных в отверстии горловины. Эти токопроводы направляют поток аргона к охлаждающей спирали и от нее во время работы детектора.

Два пучка непокрытых оптических волокон Kuraray Y11, сдвигающих длину волны, обернуты вокруг основания внешней поверхности горловины сосуда. Оба конца каждой связки соединяются с ФЭУ Hamamatsu R7600-300. Всего имеется 4 ФЭУ для экранировки горловины (NV). Они расположены над блоками наполнителя, окружающими горловину сосуда. Расстояние от центра сосуда до блоков такое же, как и до ФЭУ. Экранировка горловины используется для маркировки любого видимого света, генерируемого вблизи горловины, относительно нечувствительной к фотонам области детектора.

Вся сборка содержится в сфере из нержавеющей стали, которая продувается постоянным потоком очищенного от радона Rn газа N₂. Эта сфера погружена в резервуар для воды, имеющий размеры 7,8 м в высоту и 7,8 м в диаметре, с 48 наружными ФЭУ Нататаtsu R1408, установленными на его внешней поверхности. Совместно эти ФЭУ и резервуар для воды составляют черенковское мюонное вето (MV), используемое для мечения космогенно-индуцированных фонов, в то время как защитная вода обеспечивает подавление нейтронного и гамма-фона от стен лаборатории.

Сверху мюонного вето вокруг сферы из нержавеющей стали размещена серия калиб-

7

ровочных трубок. Эти трубки позволяют устанавливать радиоактивные источники в MV вокруг детектора для его калибровки с помощью источников нейтронов и γ -излучения. Калибровочные источники могут быть размещены с набором детекторов, просматриваемых дополнительной парой калибровочных ФЭУ, позволяющих выделять события, совпадающие с радиоактивным распадом источника.

2.2 Ожидаемые фоновые события

2.2.1 Общее количество ожидаемых фоновых событий

Общее количество прогнозируемых фоновых событий в интересующей области поиска WIMP может быть выражено следующим образом:

$$N_{bkg} = N_{er} + N_{Cher} + N_{n,rdg} + N_{n,csg} + N_{\alpha,AV} + N_{\alpha,neck} , \qquad (2.1)$$

где N_{er} – ожидаемое количество фоновых событий от электронов отдачи, N_{Cher} – ожидаемое количество фоновых событий, произведенных черенковским излучением в акриловой поверхности, $N_{n,rdg}$, $N_{n,csg}$ – количество событий от радиогенных и космогенных нейтронов, $N_{\alpha,AV}$, $N_{\alpha,neck}$ – число α -распадов в акриловом сосуде AV и в направляющей трубе.

В данной работе рассматриваются фоновые события, возникающие от α -распадов, а именно от α -распадов ²¹⁰Ро.

2.2.2 Фоновые события от α -распадов ядер

 α -активные ядра из уранового (²³⁸U) и ториевого (²³²Th) рядов, вносящие вклад в фоновые события в детекторе DEAP-3600, представлены в таблицах 2.1 и 2.2:

Родительские	Дочерние	Период	Энергия	Мода
ядра	ядра	полураспада	распада (МэВ)	распада
²²² Rn	²¹⁸ Po	3,832 д	$5,\!590$	α
²¹⁸ Po	$^{214}\mathrm{Pb}$	3,10 мин	6,114	α
²¹⁴ Pb	²¹⁴ Bi	26,8 д	1,024	β
²¹⁴ Bi	²¹⁴ Po	19,9 мин	3,272	β
²¹⁴ Po	²¹⁰ Pb	164,3 мкс	7,833	α
²¹⁰ Pb	²¹⁰ Po	22,3 г	0,0635	β
²¹⁰ Po	²⁰⁶ Pb	138,376 д	5,407	α

Таблица 2.1 – Урановый радиоактивный ряд

Родительские	Дочерние	Период	Энергия	Мода
ядра	ядра	полураспада	распада (МэВ)	распада
²²² Ra	²²⁰ Rn	3,66 д	5,788	α
²²⁰ Rn	²¹⁶ Po	$55,\!6~{ m c}$	6,404	α
²¹⁶ Po	²¹² Pb	0,145 c	6,906	α
²¹² Pb	²¹² Bi	10,64 ч	0,573	β
²¹² Bi (35,94%)	²¹² Po	60,55 мин	6,207	α
²¹² Bi (64,06%)	²⁰⁸ Tl	60,55 мин	2,254	eta,γ
²¹² Po	²⁰⁸ Pb	0,299 мкс	8,954	α
²⁰⁸ Tl	²⁰⁸ Pb	3,053 мин	5,001	eta,γ

Таблица 2.2 – Ториевый радиоактивный ряд

2.2.3 Фоновые события от α -распадов ²¹⁰Ро

МС события

Выборку событий α -распадов ²¹⁰Ро, сгенерированную с помощью метода Монте-Карло на graham кластере Compute Canada, можно увидеть на рисунке 2. Ряд пиков представляют собой распады, произошедшие в разных частях детектора (в зависимости от удаленности до центра резервуара r_{MC}):

- На поверхности акрилового сосуда AV ($r_{MC} = 851,000$ мм)
- В толще акрилового сосуда (851,000 < r_{MC} < 851,050 мм)
- В толще ТРВ (850, 997 < r_{MC} < 851, 000 мм)
- На поверхности раздела LAr/TPB ($r_{MC} = 850, 997$ мм)

Из распределения видно, что распределение фотоэлектронов от α -распадов ²²²Rn в объеме LAr частично перекрывается с распределением фотоэлектронов от α -распадов ²¹⁰Po.

Рисунок 2.2 – Распределения фотоэлектронов от α -распадов ²¹⁰Ро в разных частях детектора, а также близлежащее распределение фотоэлектронов от α -распадов ²²²Rn в объеме LAr: черным обозначены события от ²¹⁰Ро на поверхности AV, красным – события от ²¹⁰Ро в объеме AV, синим – в объеме TPB, голубым – на поверхности раздела TPB/LAr, зеленым – события от ²²²Rn в объеме LAr

Экспериментальные данные

Согласно данным совокупность α -распадов от ²¹⁰Po на акриловой поверхности AV, в объеме AV, а также в объеме TPB и на поверхности раздела TPB/LAr находится рядом с распределением α -распадов от ²²²Rn.

Дискриминация формы импульса может быть использована для подавления электронов отдачи. Определим параметр дискриминации формы импульса Fprompt как долю фотоэлектронов, обнаруженных вблизи времени события. Максимальное разделение событий электронов отдачи (событий, вызванных β - и γ -излучением) и ядер отдачи было получено при использовании временного промежутка [-28, 60] нс вокруг времени события.

На рисунке 2.3 представлено двумерное распределение α-распадов ²¹⁰Po. Из графика видно, что спектр ²¹⁰Po имеет широкое распределение по фотоэлектронам с хвостом, распространяющимся в область низких энергий, который возникает из-за насыщения ΦЭУ и отсечения верхней части импульса цифровым преобразователем V1720. Оба эти эффекта снижают общую восстановленную энергию PE. Степень, в которой PE ухудшается из-за насыщения и отсечения, в значительной степени зависит от положения. Зависимость этих эффектов от положения показана на рисунке 2.4.

Рисунок 2.3 – Распределение экспериментальных данных в плоскости (Fprompt, PE), где РЕ – количество фотоэлектронов

Рисунок 2.4 – Распределение экспериментальных данных в плоскости (Радиус, РЕ) при высоких значениях fprompt > 0.55. Уменьшение объема данных при больших радиусах объясняется эффектами отсечения и насыщения в ФЭУ. Были применены только низкоуровневые критерии отбора ((!(*Calcut*&0x31f8)), (!(*dtmTrigSrc*&0x82))

Для выделения региона событий с α -распадами ²¹⁰Ро (а также для отделения его от близлежащих событий α -распадов ²²²Rn) при анализе данных предлагается использовать следующие критерии отбора:

- 9000 < PE < 23000: нижний предел 9000 выбран так, что с одной стороны он имеет достаточно низкое значение, чтобы хвост распределения был идентифицирован и включен в анализ, а с другой стороны это значение на ~5000 фотоэлектронов больше «граничной» точки α -распадов ²¹⁰Ро в горловине. Под «граничной» точкой имеется в виду то число PE, начиная с которого в сигнал не дают вклад распады ²¹⁰Ро из горловины сосуда, которые отражаются от нижней части детектора и дают отдельный низкоэнергетический фон. Это вызвано тем, что на верхней поверхности сосуда присутствует тонкая пленка LAr. Верхний предел в 23000 выбран с учетом включения событий α -распада ²²²Rn в фит и исключения событий α -распадов ²¹⁸Po, которые начинаются в районе ~23500 PE;
- *Fprompt* > 0, 55: это ограничение выбрано так, что события электронной отдачи при более низких значениях Fprompt исключаются;
- ((!(*Calcut*&0x31*f*8)), (!(*dtmTrigSrc*&0x82)): ограничения, гарантирующие, что наблюдаемый в контрольной области сигнал был инициирован, когда система сбора данных работала оптимально, то есть, что сигнал не является внутренним триггером, связанным с внешним триггером мюонного вето, а так же не является результатом случайного срабатывания триггера;
- subevent N == 1: удаление наложенных событий;
- *fmaxpe* < 0,75: ограничение, предназначенное для исключения черенковских событий.

В таблице 2.3 перечислены вышеизложенные критерии отбора, а также представлено количество событий α -распадов ²¹⁰Ро, оставшихся после их применения. Таблица 2.3 — Критерии отбора, используемые для выделения региона событий
с α -распадами $^{210}\mathrm{Po}$

N⁰	Критерий	Используемые	Кол-во оставшихся	% событий
	отбора	ограничения	событий	от начального
1	nSCBayes	9000 < PE < 23000	_	-
2	+ fprompt	> 0.55	37738	-
3	+dtmTrigSrc	(!(dtmTrigSrc&0x82))	37712	0.07 ± 0.73
4	+ calcut	((!(Calcut&0x31f8))	37486	0.60 ± 0.72
5	+fmaxpe	$<\!\!0.75$	37486	0.00 ± 0.73
6	+mblikelihoodZ	$< 500 \mathrm{mm}$	36783	1.88 ± 0.72
7	+subeventN == 1		35248	4.17 ± 0.71
		Итог:	35248	6.60 ± 0.69

После применения ограничений распределение событий в координатах (Fprompt, PE) приняло следующий вид:

Fprompt vs. nSCBayes Three Years Dataset

Рисунок 2.5 – Распределение оставшегося количества событий после применения ограничений для выделения интересующей области событий от α-распадов ²¹⁰Po

nSCBayes Three Years Dataset

Рисунок 2.6 – Распределение оставшегося количества событий после применения ограничений для выделения интересующей области событий от α-распадов ²¹⁰Po (одномерное распределение)

Для вычисления активности источника α-распадов и фита разных компонент (вклад распадов с поверхности AV, объема AV, объема TPB и поверхности раздела LAr/TPB) был построен одномерный график, представляющий те же данные, что и на рисунке 2.5.

Глава 3

Анализ экспериментальных данных

3.1 Вычисление активности

Выражение, позволяющее определить вклад различных компонент в общую активность (здесь активность представлена как число срабатываний триггера детектора) имеет следующий вид:

$$N_{trig.} = \sum_{u}^{N_{comp}} (w^{u} f_{pileup} N_{trig}) = t_{live} \times \left(\sum_{u}^{N_{comp}} \mathscr{A}^{u} \epsilon^{u} A^{u}\right) , \sum_{u}^{N_{comp}} w^{u} = 1 .$$
(3.1)

Здесь *u* – индекс компоненты, которая вносит вклад в спектры фотоэлектронов, показанные на рисунках 2.5, 2.6. Как обсуждалось ранее, для заданного здесь приближения рассмотриваются пять компонент:

- 1. ²¹⁰Po на поверхности AV;
- 2. ²¹⁰Ро в объеме AV;
- 3. ²¹⁰Ро в объеме ТРВ;
- 4. ²¹⁰Ро на границе раздела LAr/TPB;
- 5. ²²²Rn в объеме LAr.

Переменные, представленные в уравнении (3.1), имеют следующие значения:

N_{trig} – количество срабатываний триггера: полное число распадов, произошедших в детекторе, которые вызвали срабатывание триггера;

- w^u веса компонент: вклад каждого источника (сумма вкладов всех источников = 1);
- f_{pileup} коррекция наложений: учет триггеров, не учтенных при выборе ограничения subevent N == 1;
- A^u активность: полное число распадов в единицу времени на единицу площади (или объема), которые произошли в детекторе, не зависимо от того, вызвали они срабатывание триггера или нет;
- *ϵ^u* вероятность срабатывания триггера: вероятность того, что данный распад вызовет срабатывание триггера детектора после учета всех наложенных ограничений из таблицы 2.3;
- A^u площадь поверхности (или объем) и масса: в зависимости от источника событий это либо площадь поверхности (распады ²¹⁰Ро на акриловой поверхности AV, в TPB (аппроксимируем как поверхность) или на поверхности раздела TPB/LAr), либо объем (распады ²¹⁰Ро в объеме AV или распады ²²²Rn в объеме LAr), где происходили распады;
- t_{live} время набора данных: время, в течение которого проводились наблюдения.

Используя приведенные выше определения, получаем выражение для активности данного источника:

$$\mathscr{A}^{u}A^{u} = \frac{w^{u}f_{pileup}N_{trig.}}{\epsilon^{u}t_{live}}[Bq] .$$
(3.2)

Также для дальнейших расчетов требуется вычислить ожидаемое количество срабатываний триггера от данного компонента N^u , которое учитывает вес компонента w^u и поправочный коэффициент наложений f_{pileup} :

$$N_{trig.}^{u} = w^{u} f_{pileup} N_{trig.} . aga{3.3}$$

Основная цель последующего анализа состоит в том, чтобы вычислить оценку активности \mathscr{A}_w^u для каждого из четырех компонент источника ²¹⁰Ро и их неопределенностей, используя ограничение на вклад от ²²²Rn. Данный анализ важен, поскольку он требуется для подсчета ожидаемого количества событий, просочившихся в низкоэнергетичную области PE, где ожидается наличие сигнала от WIMP.

3.2 Вычисление весов компонент

Чтобы определить значения весов компонент w^u , выполняется фитирование каждой из компонент (2.2) и одномерного спектра, полученного при анализе данных (рисунок 2.6). Фит состоит из двух наборов «размазывающих» параметров $(\sigma; \mu)_{TPB}$, $(\sigma; \mu)_{LAr}$ и пяти весовых коэффициентов w^u для каждого источника распадов. Параметры размытия $(\sigma; \mu)_{TPB}$ используются для определения гауссовой модели шероховатости поверхности слоя ТРВ. При Монте-Карло моделировании слой ТРВ реализован в виде идеального слоя толщиной 3 мкм, который параллелен как поверхности акрила со стороны AV, так и границе раздела с областью жидкого аргона на другой стороне. В действительности эта поверхность не идеально ровная, она имеет возвышения и впадины, которые образуют шероховатость поверхности слоя ТРВ. Это означает, что распределение энергии, выделяемой в жидком аргоне от распадов ²¹⁰Ро с поверхности AV, является более широким, чем предсказывает моделирование Монте-Карло. Кроме того, фактическая толщина ТРВ в среднем может быть немного больше или меньше 3 мкм, что приводит к сдвигу числа зарегистрированных фотоэлектронов, поскольку количество энергии, потерянной в ТРВ, может быть меньше или больше предсказанного моделированием. Аналогично второй набор параметров размытия используется для учета не идеальной сферичности объема LAr. Эти параметры используются только для вклада распадов ²²²Rn в объем LAr. Список параметров, используемых для подсчета активности ²¹⁰Ро представлены в таблице 3.1

Вес компоненты w^4 от распадов ²²²Rn был рассчитан следующим образом: были профитированы с помощью функции Гаусса пик от распадов ²¹⁰Po на поверхности AV, в объеме AV, на поверхности TPB и на поверхности раздела TPB/LAr и пик от распадов ²²²Rn. Далее был найден вклад от пика ²²²Rn: 4.65%. Далее данное значение было решено положить фиксированным и не варьировать в процессе подсчета вклада других компонент. Полученные значения параметров представлены в таблице 3.2.

Параметр	Описание параметра	Начальное значение	Диапазон
σ_{TPB} Размытие ширины пика		1.0	[0.9, 1.1]
	для распадов ²¹⁰ Ро		
μ_{TPB}	Размытие среднего	0.0	[0, 0.1]
	для распадов ²¹⁰ Ро		
σ_{LAr}	Размытие ширины пика	1.0	[0.9, 1.0]
	для распадов ²²² Rn в LAr		
μ_{LAr}	Размытие среднего	0.0	[0, 0.1]
	для pacnaдoв ²²² Rn в LAr		
w^0	Вес компоненты для ²¹⁰ Ро	0.70	[0.01, 1.0]
	на поверхности AV		
w^1	Вес компоненты для ²¹⁰ Ро	0.20	[0.01, 1.0]
	в объеме AV		
w^2	Вес компоненты для ²¹⁰ Ро	10^{-5}	$[0.0, \ 3.0]$
	на поверхности ТРВ		
w^3	Вес компоненты для ²¹⁰ Ро	10^{-5}	[0.0, 3.0]
	на поверхности раздела TPB/LAr		
w^4	Bec компоненты для ²²² Rn	0.0465	[0.0465; 0.0465]
	в объеме LAr		

Таблица 3.1 – Параметры компонент, вносящие вклад в спект
р $^{210} \mathrm{Po}$

Параметр	Значение параметра
σ_{TPB}	0.045
μ_{TPB}	0.95
σ_{LAr}	0
μ_{LAr}	1
w^0	$75.8002 \pm 0.6762\%$
w^1	$17.7809 \pm 0.4210\%$
w^2	$0.00\pm0.2\%$
w^3	$3.8887 \pm 0.3006\%$
w^4	$4.65 \pm 0.00\%$

Таблица 3.2 – Полученные значения весов компонент

При фитировании был получен следующий график:

Рисунок 3.1 – Фитирование спектра $^{210}{\rm Po}$ в диапазоне 9000 ÷ 23000 PE $(\chi^2_{min}=2.861)$

3.2.1 Корреляции между весами компонент

Значения корреляции между каждым из весовых компонентов показаны в таблице (весовая компонента ²²²Rn в объеме LAr положена фиксированной):

w _{ij}	w_0	w_1	w_2	w_3
w_0	1	-0.53511	-0.0019398	-0.48198
w_1	-0.53511	1	0.00028411	0.22023
w_2	-0.0019398	0.00028411	1	-0.0021698
w_3	-0.48198	0.22023	-0.0021698	1

Таблица 3.3 – Значения корреляций между весами компонент

На рисунках 3.2, 3.3 и 3.4 показаны корреляционные контуры между каждым из весовых компонентов w_i по отношению к значению χ^2/ndf .

Рисунок 3.2 – Вверху слева: корреляция между ²¹⁰Ро в объеме AV и ²¹⁰Ро на поверхности AV. Вверху справа: корреляция между ²¹⁰Ро в объеме TPB и ²¹⁰Ро на поверхности AV. Внизу слева: ²¹⁰Ро на поверхности раздела TPB/LAr и ²¹⁰Ро на поверхности AV. Внизу справа: ²²²Rn в LAr и ²¹⁰Ро на поверхности AV

Рисунок 3.3 – Вверху слева: корреляция между ²¹⁰Ро в объеме ТРВ и ²¹⁰Ро в объеме AV. Вверху справа: корреляция между ²¹⁰Ро на поверхности раздела ТРВ/LAr и ²¹⁰Ро в объеме AV. Внизу слева: ²²²Rn в LAr и 210Ро в акриловой массе AV. Внизу справа: корреляция между ²¹⁰Ро на поверхности раздела ТРВ/LAr и в объеме ТРВ

Рисунок 3.4 – Корреляция между ²²²Rn в LAr и ²¹⁰Po в объеме TPB (слева) и на границе раздела TPB/LAr (справа)

3.3 Вероятности срабатывания триггеров

Чтобы определить количество сработавших триггеров $N_{trig.}$, нужно учитывать вероятность срабатывания ϵ^{u} , которая была получена из моделирования MC:

Компонента	Вероятность срабатывания	Доля от начального
	триггера, %	значения, %
²¹⁰ Ро на поверхности AV	43.24 ± 0.28	20.83 ± 0.10
²¹⁰ Ро в объеме AV	10.59 ± 0.12	91.57 ± 1.03
²¹⁰ Ро на поверхности ТРВ	45.95 ± 0.29	63.68 ± 0.39
$\ \ ^{210}$ Ро на поверхности раздела TPB/LAr $\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	47.68 ± 0.27	54.02 ± 0.30
²²² Rn в объеме LAr	4.11 ± 0.15	96.03 ± 3.40

Таблица 3.4 – Вероятности срабатывания триггеров

3.4 Коррекция наложений

В случае идентификации наложений (применения orpaничения subevent N == 1) доля событий от начального значения (4.17%) примерно согласуется с прогнозируемой скоростью наложения событий в пределах исследуемого диапазона PE, совпадающим с ³⁹Ar (4.18 ± 0.15%). Эта вероятность рассчитывается исходя из того, что масса LAr равна 3279 ± 96 кг с удельной активностью 0.951 ± 0.036 Бк кг⁻¹ для окна совпадений 13,5 μ с. Удалив наложение, мы гарантируем, что спектральная форма оставшегося распределения PE отражает только отдельные события. Однако эти потери в распадах ²¹⁰Po и ²²²Rn необходимо учитывать при подсчете общего количества сработавших тригтеров для вычисления активности. Поэтому делается следующее предположение: все события, удаленные с помощью ограничения subevent N == 1 - это события ²¹⁰Po или ²²²Rn, совпавшие с ³⁹Ar. Наложения носят случайный характер и не зависят ни от какой компаненты, рассматриваемой при вычислении активности. Энергии наложенных с ³⁹Ar событий недостаточно, чтобы событие от распада ²¹⁰Po и ²²²Rn вышло за пределы исследуемого интервала значений *Fprompt*. Исходя из этого предположения, мы должны увеличить количество событий от распадов ²¹⁰Po и ²²²Rn в контрольной области (после применения всех ограничений из таблицы 2.3) на коэффициент f_{pileup} , определяемый следующим образом:

$$f_{pileup} = \frac{1}{1 - 0.0417} = 1.044.$$
(3.4)

3.5 Вычисление живого времени сбора данных

Живое время сбора данных, рассчитанное для обсуждаемой здесь активности ²¹⁰Ро, отличается от времени, в течение которого проводится поиск частиц скрытой массы WIMP. При низких значениях PE (~ 150) любые конкурирующие события могут вытолкнуть событие из области поиска WIMP, и, следовательно, поправка времени регистрации для поиска событий WIMP будет влиять на вероятность наложения событий от ³⁹Ar (~ 4%). Однако в случае событий с PE > 9000 применение той же поправки не так очевидно.

Рассмотрим, например, событие с 9000 *PE* и *Fprompt* = 0, 70. Такое событие находится на нижней границе *PE* исследуемой выборки и поэтому наиболее чувствительно к изменениям знчений *PE* и *Fprompt* из-за наложения событий. В случае, если такое событие от ²¹⁰Po, имеющее энергию ~ 9000 *PE*, совпадает с событием ³⁹Ar (предполагая, что среднее значение *PE* составляет 1450 *PE*, что рассчитано из образца MC для ³⁹Ar). Вклад от такого событий составит ~ $0.7 \times 9000 = 6300 PE$, и полный вклад 9000+1450 = 10450 *PE*. Следовательно, влияние наложения отразится на сдвиге *Fprompt* 0.70 \rightarrow 0.60. Таким образом, событие останется в выборке, поскольку мы применяем ограничение *Fprompt* > 0.55.

Основываясь на приведенном выше аргументе, единственное объяснение для утечки событий от ²¹⁰Po из исследуемой области – это случайное совпадение с событиями, на которые сработали ограничения dtmTrigSrc&0x82 или calcut&0x31f8. Из таблицы 2.3 становится ясным, что количество событий, удаленных из выбранной области, составило 37738 - 37486 = 252. Следовательно, было удалено 252×13.5 мкс = 3.402мс (где 13,5мкс – временное окно регистрации одного события) от общего времени сбора данных. Окончательное живое время сбора данных тогда:

$$t_{live} = 33557691.61 - 3.402 \times 10^{-3} = 33557691.61 \pm 1.00s .$$
(3.5)

Ошибка вычисления в этом случае предполагается 1 с. Такое предположение разумно, учитывая, что время регистрации событий является небольшим источником ошибок при вычислении активности.

3.6 Активность

Используя величины, рассчитанные в разделах 3.2, 3.3 и 3.5, можно рассчитать активности отдельных компонент, используя уравнение (3.2). Полученные значения представлены ниже в таблице 3.5. Активность ²²²Rn в LAr не является предметом внимания данного анализа и используется только в качестве ограничения.

Компонента	$N_{trig.}$	Активность
²¹⁰ Ро на поверхности AV	24898.1	0.156 ± 0.002 мБк/м ²
²¹⁰ Ро в объеме AV	6451.59	$5.718\pm 0.154~{ m MBk/kg^{-1}}$
		2.916 ± 0.049 м Бк
²¹⁰ Ро на поверхности ТРВ	<1	$< 0.01 \ \mathrm{mBk}/\mathrm{m}^2$
²¹⁰ Ро на поверхности раздела TPB/LAr	1327.34	0.013 ± 0.001 мБк/м ²
²²² Rn объеме LAr	1679.27	0.379 ± 0.018 мкБк/кг $^{-1}$

Таблица 3.5 – Оценка активности для компонент

Суммируем все поверхностные компоненты (²¹⁰Ро на поверхности AV, ²¹⁰Ро на поверхности TPB, ²¹⁰Ро на поверхности раздела TPB/LAr) и учтем корреляции в ошибках следующим образом:

$$\sigma_{surf} = \sqrt{\sigma_0^2 + \sigma_2^2 + \sigma_3^2 + a_{02}\sigma_0\sigma_2 + a_{03}\sigma_0\sigma_3 + a_{23}\sigma_2\sigma_3} , \qquad (3.6)$$

где σ_i – погрешности весов поверхностных компонентов, определяемые во время фитирования, a_{ij} – коэффициент корреляции между компонентами і и j, указанные в таблице 3.3. Таким образом, общая активность ²¹⁰Ро в детекторе включает две компоненты – поверхностную и объемную активность:

210
Ро на поверхности $=$ 0.152 ± 0.027 мБк/м 2 210 Ро в объеме $=$ 2.875 ± 0.062 мБк

Погрешность поверхностной активности $^{210}{\rm Po}$ составляет $(0.031/0.152)\sim 20\%$ и обусловлена неопределенностью объемной составляющей распадов $^{210}{\rm Po}$ в TPB.

Глава 4

Заключение

В данной работе проводилось исследование α-активности одного из компонент, вносящих вклад в фоновые события эксперимента DEAP-3600, – ²¹⁰Po. Основными результатами работы стали:

- Выделение региона событий с *α*-распадами ²¹⁰Ро;
- Определение вклада различных компонент, вносящих вклад в общую активность ²¹⁰Ро:
- Вычисление ряда величин, необходимых для расчета активности ²¹⁰Po, а именно: корреляций между весами компонент, вероятностей срабатывания триггеров, времени регистрации событий. Также была учтена коррекция наложений;
- Вычисление активности ²¹⁰Ро в объеме и на поверхности детектора.

После расчета активности 210 Ро в разных частях детектора предполагается использовать вышеизложенную модель для прогнозирования количества событий от 210 Ро, вносящих вклад в область поиска WIMP.

Список использованных источников

- Горбунов Д.С., Рубаков В.А. Введение в теорию ранней Вселенной: Теория горячего Большого взрыва. Изд. 3-е, сущ. перераб. и значит. доп. – М.: ЛЕНАНД, 2016. – 616 с.; цв. вкл. (стр.84)
- [2] G. Bertone, D. Hooper, and J. Silk, Phys. Rep. 405, 279 (2005).
- [3] E. Aprile et al. (XENON Collaboration), Phys. Rev. Lett. 121, 111302 (2018).
- [4] P.-A. Amaudruz et al. (DEAP-3600 Collaboration), Phys. Rev. Lett. 121, 071801 (2018).
- [5] P.-A. Amaudruz et al. (DEAP-3600 Collaboration), Astropart. Phys. 108, 1 (2019).
- [6] P.-A. Amaudruz et al. (DEAP-3600 Collaboration), Nucl. Instrum. Methods Phys. Res. A 922, 373 (2019)