Отчет

о научно-исследовательской работе на тему:

Исследование альфа-активности в детекторе DEAP-3600

Научный руководитель:

Доц., к.ф.-м.н.

А. В. Гробов

Студент

М. А. Семичева

Цели работы:

- Выделение региона событий с α-распадами ²¹⁰Ро;
- Определение вклада различных компонент в общую активность ²¹⁰Po;
- Вычисление величин, необходимых для расчета активности ²¹⁰Po:
 - корреляций между весами компонент,
 - вероятностей срабатывания триггеров,
 - живого времени сбора данных,
 - учет коррекции наложений,
- Вычисление активности ²¹⁰Ро в объеме и на поверхности детектора.

Эксперимент DEAP-3600

Прогнозируемая чувствительность с точки зрения спин-независимого поперечного сечения рассеяния WIMP-ов на ядре составляет

 10^{-46} cm^2

при энергии 100 ГэВ/ с²

Фланец Центральный опорный механизм Стальная труба (внешняя) Внутренняя труба (зеленый) Труба в вакуумном кожухе Экранировка (оранжевый) горловины (NV) Охлаждающая спираль Акриловые световоды FGs Газообразный аргон 48 ФЭУ мюонного вето 255 ФЭУ и световоды Акриловый сосуд (AV) и слой ТРВ Стальной корпус 3279 кг жидкого аргона Блоки наполнителя Пеноблоки Опора нижней пружины

Рисунок 1 - Схема поперечного сечения детектора DEAP-3600

Фоновые события от α-распадов ²¹⁰Ро

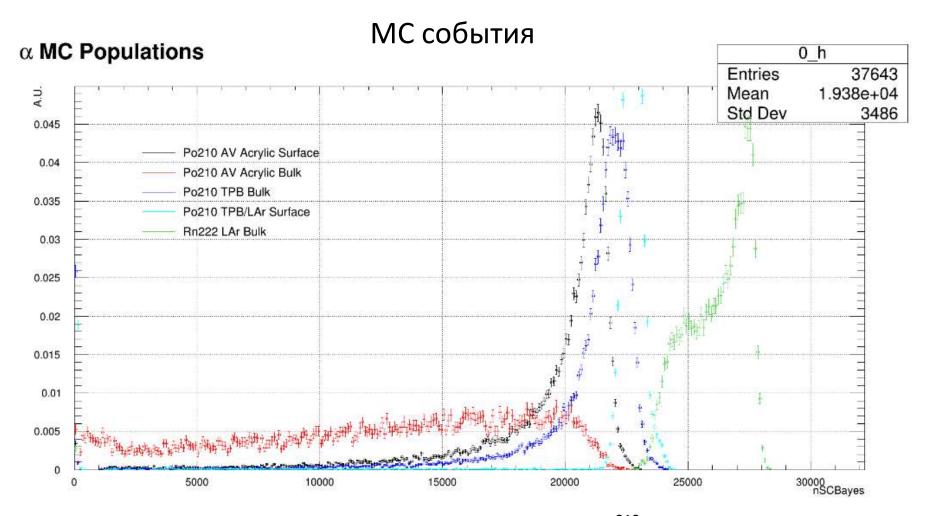


Рисунок 2 - Распределения фотоэлектронов от α -распадов 210 Ро в разных частях детектора и распределение фотоэлектронов от α -распадов 222 Rn в объеме LAr

Экспериментальные данные

Three Years DataSet Alpha Populations

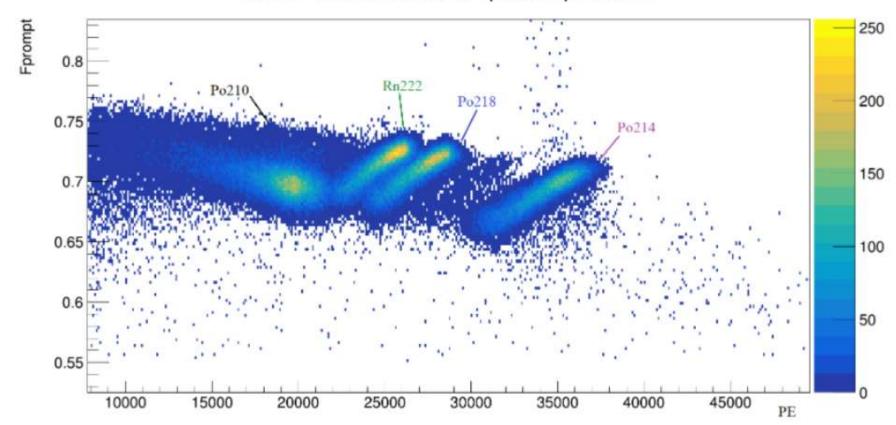


Рисунок 3 - Распределение экспериментальных данных в плоскости (Fprompt, PE), где Fprompt — параметр дискриминации формы импульса и PE — количество фотоэлектронов

Выделение контрольной области: критерии отбора

Таблица 1 - Критерии отбора, используемые для выделения региона событий с α -распадами 210 Ро

Nº	Критерий отбора	Используемое ограничение	Кол-во оставшихся событий	% событий от начального
1	Количество ФЭ	9000 <pe<23000< td=""><td>-</td><td>-</td></pe<23000<>	-	-
2	Fprompt	>0.55	37738	-
3	Триггер мюонного вето	(!(dtmTrigSrc&0x82))	37712	0.07±0.73
4	Случайное срабатывание триггера	(!(Calcut&0x31f8))	37486	0.60±0.72
5	Исключение черенковских событий	fmaxpe<0.75	37486	0.00±0.73
6	Z координата	<500 mm	36783	1.88±0.72
7	subeventN	==1	35248	4.17±0.71
	Итого:		35248	6.60±0.69

Fprompt vs. nSCBayes Three Years Dataset

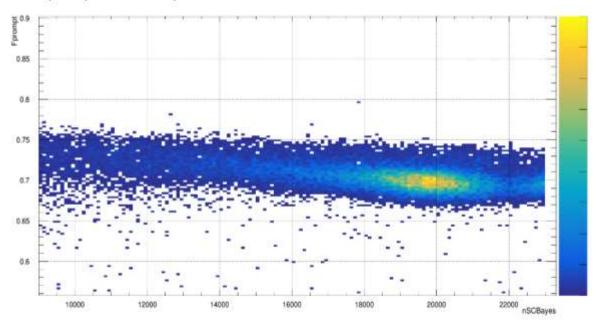


Рисунок 4 - Распределение оставшегося количества событий после применения ограничений для выделения интересующей области событий от α-распадов ²¹⁰Ро

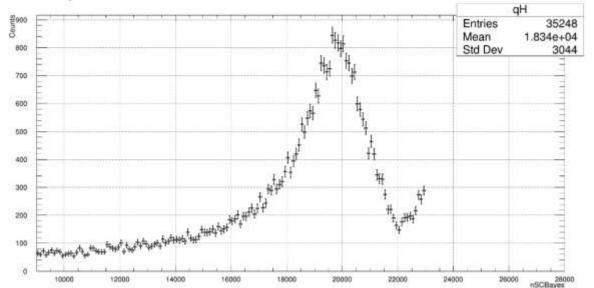


Рисунок 5 - Распределение оставшегося количества событий после применения ограничений для выделения интересующей области событий от α-распадов ²¹⁰Ро (одномерное распределение)

Вычисление величин, необходимых для расчета активности ²¹⁰Ро:

$$N_{trig.} = \sum_{u}^{N_{comp}} (w^{u} f_{pileup} N_{trig}) = t_{live} \times \left(\sum_{u}^{N_{comp}} \mathscr{A}^{u} \epsilon^{u} S^{u} \right) , \sum_{u}^{N_{comp}} w^{u} = 1$$
 (1)

где $N_{trig.}$ — количество срабатываний триггера, w^u — веса компонент, f_{pileup} — коррекция наложений, \mathscr{A}^u — активность, ϵ^u — вероятность срабатывания триггера,

 S^{u} — площадь поверхности (или объем),

 t_{live} – живое время сбора данных.

Тогда активность:
$$\mathscr{A}^u S^u = \frac{w^u f_{pileup} N_{trig.}}{\epsilon^u t_{live}} [Bq] \tag{2}$$

1. Веса компонент

Таблица 2 - Полученные значения весов компонент

Параметр	Значение параметра
σ_{TPB}	0.045
μ_{TPB}	0.95
σ_{LAr}	0
μ_{LAr}	1
w^0	$75.8002 \pm 0.6762\%$
w^1	$17.7809 \pm 0.4210\%$
w^2	$0.00 \pm 0.2\%$
w^3	$3.8887 \pm 0.3006\%$
w^4	$4.65 \pm 0.00\%$

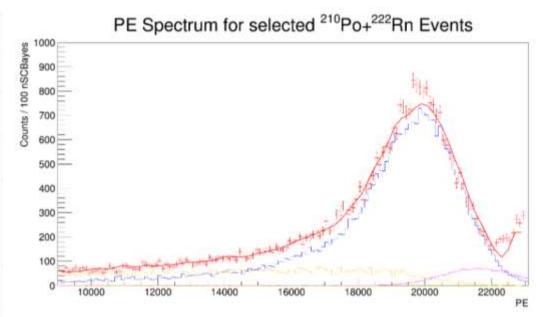


Рисунок 6 - Фитирование спектра ²¹⁰Ро в диапазоне 9000 ÷23000 PE

2. Корреляции между весами компонент

w_{ij}	w_0	w_1	w_2	w_3
w_0	1	-0.53511	-0.0019398	-0.48198
w_1	-0.53511	1	0.00028411	0.22023
w_2	-0.0019398	0.00028411	1	-0.0021698
w_3	-0.48198	0.22023	-0.0021698	1

Таблица 3 - Значения корреляций между весами компонент

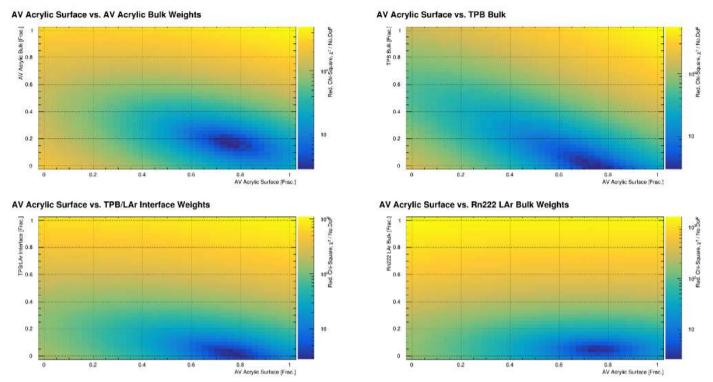


Рисунок 7 – Пример корреляционных контуров

3. Вероятности срабатывания триггеров

Таблица 4 — Вероятности срабатывания триггеров

Компонента	Вероятность срабатывания	
	триггера, %	
²¹⁰ Ро на поверхности AV	43.24 ± 0.28	
²¹⁰ Ро в объеме AV	10.59 ± 0.12	
²¹⁰ Ро на поверхности ТРВ	45.95 ± 0.29	
210 Ро на поверхности раздела TPB/LAr	47.68 ± 0.27	
$^{222}\mathrm{Rn}$ в объеме LAr	4.11 ± 0.15	

4. Коррекция наложений

После применения ката subeventN==1 было удалено 4.17% событий

$$=> f_{pileup} = \frac{1}{1 - 0.0417} = 1.044 \tag{3}$$

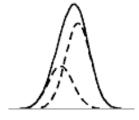


Рисунок 8 — пример наложения событий

5. Вычисление живого времени сбора данных

$$t_{live} = 33557691.61 - 3.402 \times 10^{-3} = 33557691.61 \pm 1.00s \tag{4}$$

Активность

Таблица 5 - Оценка активности для компонент

Компонента	$N_{trig.}$	Активность
²¹⁰ Ро на поверхности AV	24898.1	$0.156 \pm 0.002 \; \mathrm{mБк/m^2}$
²¹⁰ Ро в объеме AV	6451.59	$5.718 \pm 0.154 \; \mathrm{mBk/kr^{-1}}$
		2.916 ± 0.049 мБк
²¹⁰ Ро на поверхности ТРВ	<1	$< 0.01 \ { m mBk/m^2}$
$^{210}\mbox{Po}$ на поверхности раздела $\mbox{TPB/LAr}$	1327.34	$0.013 \pm 0.001 \; \mathrm{mБк/m^2}$
$^{222}\mathrm{Rn}$ объеме LAr	1679.27	$0.379 \pm 0.018 \; { m mkBk/kr^{-1}}$

Учет корреляций в погрешности: $\sigma_{surf} = \sqrt{\sigma_0^2 + \sigma_2^2 + \sigma_3^2 + a_{02}\sigma_0\sigma_2 + a_{03}\sigma_0\sigma_3 + a_{23}\sigma_2\sigma_3}$ (5)

Итог: 210 Ро на поверхности $= 0.152 \pm 0.027 \text{ мБк/м}^2$

 210 Ро в объеме $= 2.875 \pm 0.062 \; \mathrm{mBk}$

Результаты

- Выделение региона событий с α-распадами ²¹⁰Ро;
- Определение вклада различных компонент, вносящих вклад в общую активность ²¹⁰Po;
- Вычисление ряда величин, необходимых для расчета активности ²¹⁰Ро, а именно: корреляций между весами компонент, вероятностей срабатывания триггеров, живого времени сбора данных. Также была учтена коррекция наложений;
- Вычисление активности ²¹⁰Ро в объеме и на поверхности детектора.