МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ЯДЕРНЫЙ УНИВЕРСИТЕТ «МИФИ» (НИЯУ МИФИ)

ИНСТИТУТ ЯДЕРНОЙ ФИЗИКИ И ТЕХНОЛОГИЙ КАФЕДРА №40 «ФИЗИКА ЭЛЕМЕНТАРНЫХ ЧАСТИЦ»

УДК 531.3, 539.1.05

ИССЛЕДОВАНИЕ ХАРАКТЕРИСТИК ДЕТЕКТОРА НА ОСНОВЕ СЦИНТИЛЛЯТОРА LaBr₃(Ce) И SIPM ДЛЯ ПРИМЕНЕНИЯ В ПОЗИТРОННО-ЭМИССИОННОЙ ТОМОГРАФИИ

Студент	Д. С. Килинкаров
Научный руководитель,	
к.т.н, доцент	В. А. Канцеров
Консультант	Ф. А. Дубинин

Москва 2020

СОДЕРЖАНИЕ

B	веде	ние		2				
1	Позитронно-эмиссионная томография							
	1.1	Основ	зы позитронно-эмиссионной томографии	6				
	1.2	Строе	ение ПЭТ-томографа	8				
2	Оп	исание	е детектора	9				
	2.1	Детек	сторная сборка на основе LaBr ₃ (Ce) и SiPM	9				
3	Энергетическое разрешение детектора							
	3.1	1 Исследование зависимости энергетического разрешения де-						
		тектора от напряжения питания SiPM						
		3.1.1	Схема эксперимента	10				
		3.1.2	Обработка и результаты эксперимента	12				
4	Bpe	еменно	ре разрешение детектора	15				
	4.1	Иссле	едование временного разрешения установки	15				
		4.1.1	Схема эксперимента	15				
		4.1.2	Обработка и результаты эксперимента	17				
За	аклю	очение	;	18				
C	писо	к испо	ользованных источников	19				

ВВЕДЕНИЕ

В современном мире активно развивается клиническая диагностика заболеваний человека с помощью введения в организм радиоизотопов в индикаторных количествах. Данная область медицины называется радионуклидной диагностикой. Введение меченых радионуклидами биологически активных веществ и знание механизма их взаимодействия с организмом позволяет использовать их для обнаружения злокачественных новообразований. Такие вещества называются радиоактивными фармацевтическими препаратами (РФП). В дальнейшем проводится визуализация распределения концентрации меченых радиоизотопами веществ в организме, на основе которой можно выдвинуть предположение о локализации опухоли для дальнейшего проведения биопсии — прижизненном заборе клеток организма для подтверждения или опровержения предварительно поставленного диагноза. Обычно, визуализация подразумевает построение изображений, отражающих распределение концентрации радиоизотопов в организме, на основе данных, полученных при исследовании организма с помощью специальных аппаратов. 1

Современный рынок позитронно-эмиссионных томографов преимущественно состоит из продукции крупных зарубежных производителей медицинского оборудования, таких как GE Healthcare, Siemens, Philips и др. В подавляющем большинстве коммерческих моделей ПЭТ-томографов, прошедших клинические испытания, в качестве детекторов используются кристаллы германата висмута Bi₄Ge₃O₁₂ (BGO) - неорганического сцинтиллятора, характеризующегося высокой плотностью, позитивно сказывающейся на эффективности регистрации гамма-квантов, однако имеющего недостатки в виде большого времени высвечивания (~300 нс) и низким световыходом. Большое время высвечивания влечет увеличение мертвого времени, что ограничивает скорость счета системы. Низкий же световыход выливается в плохие показатели энергетического разрешения, которое пропорционально квадратному корню количества сцинтилляционных фотонов и

2

обычно находится в районе 20% для аннигиляционных гамма-квантов с энергиями 511 кэВ.[2]

В последнее время активно начал использоваться в качестве детектора для производства ПЭТ-томографов другой неорганический сцинтиллятор - оксиортосиликат лютеция Lu₂SiO₅(Ce) (LSO). В сравнении с BGO, он имеет существенно более высокий световыход при схожей эффективности регистрации гамма-квантов, а также меньшее в 7.5 раз время высвечивания (~40 нс), что делает его более предпочтительным для использования вместо BGO. Основным недостатком LSO является собственная радиоактивность за счет изотопа ¹⁷⁶Lu с распространенностью в 2.6% и временем полураспада $\tau_{1/2} = 3.8 \cdot 10^8$ лет. Этот радиоизотоп распадается с образованием β^- -излучения и рентгеновских лучей с энергиями 88-400 кэВ. Однако, уровень активности ¹⁷⁶Lu слишком мал, чтобы брать в расчет его влияние, он не создает заметных проблем для работы ПЭТ-томографа ввиду того, что энергия рентгеновских фотонов меньше энергий аннигиляционных гамма-квантов (511 кэВ).

Detectors	Effective atomic no (Z)	Density (g/cm ³)	Scintillation decay time (ns)	Photon yield (per keV)	Linear attenuation coefficient (cm ⁻¹) of 511 keV	Energy resolution (% at 511 keV)
NaI(Tl)	51	3.67	250	38	0.34 ^a	7.8
BGO	74	7.13	300	6	0.96	10
BaF2	54	4.89	0.6	2	0.44	11.4
GSO	59	6.71	50	10	0.67	9.5
Anthracene	-	-	26	30	-	-
LSO	66	7.40	40	29	0.87	10.1
YSO	34	4.53	70	46	0.39	12.5
CsI(Tl) ^b	54	4.51	1,000	52	0.483	4.53
LYSO	65	7.2	50	25	0.87	20
YAP	39	5.4	27	18	0.46 ^c	2.5
LaBr ₃	_	5.3	5	61	-	5.3

Таблица 1 — Характеристики некоторых сцинтилляционных кристаллов[3]

Также некоторые модели коммерческих томографов используют оксиортосиликат гадолиния $Gd_2SiO_5(Ce)$ (GSO) в качестве материала для детекторов, применяемых в ПЭТ-томографии. Несмотря на несколько меньший световыход нежели у LSO, он имеет лучшее энергетическое разрешение. Производство GSO сопряжено с рядом сложностей ввиду хрупкости кристалла сцинтиллятора. Детекторы, основанные на применении GSO, имеют очень высокую скорость регистрации, за что часто называются "быстрыми кристаллами". Фторид бария BaF_2 имеет наименьшее время высвечивания (~0.6 нс) и в основном используется в так называемых TOF-сканерах (TOF — timeof-flight, время полета), которые достаточно редко используются в клинической практике ввиду большого количества технических сложностей в реализации, однако начинают все чаще появляться на рынке, т.к. TOFтехнология при хороших временных показателях заметно улучшает получаемое изображение.

Недавно появившийся детектор, активированный иттрием оксиортосиликат лютеция (LYSO), имеет схожие с LSO характеристики и используется некоторыми производителями коммерческих моделей ПЭТ-томографов. Также появился новый детектор - активированный церием оксиортосиликат иттрия (YSO), который пока не имеет коммерческого применения. [4]

Manufact-	Philips ^b		Siemens ^c		GE Healthcare ^c	
Models→ Features↓	GEMINI TF Big Bore	GEMINI TF 64 (PET/CT)	Biograph mCT	Biograph TruePoint	Discovery VCT	Discovery PET/CT 600
Number of detectors	28 Pixelar modules	28 Pixelar modules	192	192	24 Rings	24 Rings
Number of crystals	28,336	28,336	24,336 32,448 (TrueV)	24,336 32,448 (TrueV)	13,440	12,288
Detector material	LYSO	LYSO	LSO	LSO	BGO	BGO
Ring diameter (cm)	90	90	84.2	83	88.6	81
Patient scan range (cm)	190	190	190	190	160	170
Crystal size (mm)	$4 \times 4 \times 22$	$4 \times 4 \times 22$	$4 \times 4 \times 20$	$4 \times 4 \times 20$	$\begin{array}{c} 4.7 \times 6.3 \\ \times 30 \end{array}$	$4.7 \times 6.3 \times 30$
Number of PMTs	420	420	4/block	4/block	280	256
Energy resol- ution (%)	12%	11.7%	12%	12%	-	-
Coincidence window (ns)	5	3.8	4.1	4.5	10	10
Axial FOV (cm)	18	18	16.2/21.6	16.2/21.6	15.7	15.7
Acquisition	3D,4D,TOF	3D,4D,TOF	3D	3D	D,3D,4D	3D,4D

Таблица 2 — Характеристики некоторых коммерческих моделей томографов

Относительно недавно в качестве детектора начал рассматриваться кристалл $LaBr_3(Ce)$ бромида лантана (III), активированный церием. Он имеет световыход в 1.7 выше, чем у NaI(Tl), и малое время высвечивания (~ 20 нс). Его энергетическое разрешение является одним из лучших среди всех известных сцинтилляционных кристаллов на гамма-линии цезия-

137 (662 кэВ). Также следует отметить очень высокий световыход, низкий собственный фон и отличную пропорциональность в диапазоне энергий 60-1000 кэВ. Совокупность характеристик делает его очень перспективным и актуальным для использования в ПЭТ-томографии, включая ТОF-технологию. Несмотря на все вышеперечисленное, он не лишен недостатков, основные из которых - это гигроскопичность и несколько меньшая плотность, чем у основных конкурентов (5.1 г/см³ против 7.4 г/см³ у LYSO).

1. ПОЗИТРОННО-ЭМИССИОННАЯ ТОМОГРАФИЯ

Позитронно-эмиссионная томография (ПЭТ) — это радионуклидный томографический метод исследования внутренних органов человека или животного. [5]

1.1. ОСНОВЫ ПОЗИТРОННО-ЭМИССИОННОЙ ТОМОГРАФИИ

Для исследования организма методами позитронно-эмиссионной томографии используются радиоактивные фармацевтические препараты, меченные радиоактивными нуклидами, испытывающими позитронный β^+ распад. Метод основан на регистрации испускаемых γ -квантов.

Рисунок 1.1 — Аннигиляция электрона и позитрона

После попадания РФП в организм, позитроны, возникшие в результате β^+ -распада, аннигилируют с электронами среды, в результате чего возникают два γ -кванта с одинаковой энергией в 511 кэВ, разлетающиеся по одной прямой в противоположных направлениях. В дальнейшем эти γ -кванты регистрируются большим массивом детекторов, расположенных вокруг исследуемого объекта. Зная что γ -кванты, возникшие в результате

одного события, разлетаются по одной прямой и используя схему совпадений, можно восстановить координату испускания γ -квантов. Дальнейшая компьютерная обработка сигналов от массива детекторов позволяет послойно выполнить трехмерную реконструкцию распределения концентрации позитрон-излучающих радиоизотопов в исследуемом объекте.

1.2. СТРОЕНИЕ ПЭТ-ТОМОГРАФА

Томограф представляет подвижную кушетку с ПЭТ-сканером. Перемещение кушетки позволяет послойно снимать информацию с исследуемого объекта, что позволяет существенно уменьшить как линейные размеры сканера, так и стоимость всей установки. В дальнейшем для каждого слоя отдельно визуализируется распределение концентрации радиоизотопа для последующего получения цельной картины.

ПЭТ-сканер — это кольцо, на котором установлен массив из детекторов γ -излучения. Каждый детектор представляет собой сборку из сцинтиллятора и фотоумножителя. При поглощении γ -кванта веществом сцинтиллятора, происходит преобразование энергии γ -излучения в сцинтилляционную вспышку, регистрируемую фотоумножителем. Сигналы от детекторов поступают в блок электроники, которая производит обработку и анализ сигналов, а полученные данные обрабатываются с помощью специального программного обеспечения, в результате чего оператор томографа получает визуализированную трехмерную картину распределения РФП в исследуемой области.[6][7]

2. ОПИСАНИЕ ДЕТЕКТОРА

2.1. ДЕТЕКТОРНАЯ СБОРКА НА ОСНОВЕ $LaBr_3(Ce)$ И SIPM

Детектор представляет собой сцинтилляционный кристалл бромида лантана (III) LaBr₃(Ce) и SiPM SensL FC30035 в едином герметичном корпусе. Для оптимизации светосбора используется технология прямой стыковки сцинтилляционного кристалла и кремниевого фотоумножителя: SiPM приклеивается к кристаллу, и получившаяся сборка помещается в единый герметичный корпус. Два выведенных контакта позволяют соединить сборку с остальной электроникой. Корпус защищает сцинтиллятор от влаги и, одновременно, фотодиод от засвечивания. Защита от влаги является существенным критерием в случае использования гигроскопичного кристалла сцинтиллятора.

Рисунок 2.1 — Принципиальная схема сборки сцинтилляторфотоумножитель в общем корпусе

3. ЭНЕРГЕТИЧЕСКОЕ РАЗРЕШЕНИЕ ДЕТЕКТОРА

3.1. ИССЛЕДОВАНИЕ ЗАВИСИМОСТИ ЭНЕРГЕТИЧЕСКОГО РАЗРЕШЕНИЯ ДЕТЕКТОРА ОТ НАПРЯЖЕНИЯ ПИТАНИЯ SIPM

3.1.1. СХЕМА ЭКСПЕРИМЕНТА

Для изучения зависимости энергетического разрешения детектора на основе сцинтилляционного кристалла $LaBr_3(Ce)$ и SiPM SensL FC30035 была использована экспериментальная установка, схема которой представлена на рисунке 3.1.

Рисунок 3.1 — Схема установки

В качестве источника излучения был использован ^{137}Cs , расположенный соосно детектору, в непосредственной близости от его торца для ускорения набора статистики. Сигнал от SiPM подавался через емкостной выход схемы питания C1 на канал осциллографа LeCroy Waverunner 640Zi. Данный осциллограф оснащен анализатором импульсов, с помощью которого были получены зарядовые спектры сигналов для разных напряжений питания SiPM в диапазоне 25.5B - 29.5B с шагом 0.5B. Для каждого спектра были проведены измерения уровня пьедестала. При измерении пьедестала сигнал был задержан относительно положения ворот. Интеграл каждого спектра составлял $1.5 \cdot 10^4$ событий. В качестве источника питания был использован АКТАКОМ АТН-2031.

3.1.2. ОБРАБОТКА И РЕЗУЛЬТАТЫ ЭКСПЕРИМЕНТА

Первым этапом обработки полученных данных было построение зарядового спектра источника ^{137}Cs и аппроксимация пиков полного поглощения γ -квантов с энергией 32 кэВ и 662 кэВ. Пример спектра можно наблюдать на рисунке 3.2. Отрицательные значения на шкале анализатора связаны с тем, что на входы осциллографа подавался сигнал отрицательной полярности.

Рисунок 3.2 — Зарядовый спект
р ^{137}Cs при напряжении питания SiPM $U_{\rm CM}=26.0~{\rm B}$

Далее, для пиков, соответствующих энергиям γ -квантов 32 кэВ (пик, возникающий из-за характеристического излучения ${}^{137\text{m}1}Ba$) и 662 кэВ, были построены графики зависимости относительного энергетического разрешения детектора от напряжения питания SiPM. Результаты представлены на рисунках 3.3 и 3.4 соответственно. Полученные зависимости аппроксимированы функцией $f(x) = e^{C_1 x + C_2} + C_3$.

Для пика, соответствующему энергии γ -кванта 32 кэВ, ожидаемо было получено низкое относительное энергетическое разрешение для всех значений напряжения питания SiPM. Однако для дальнейших целей работы важно не его значение, а форма зависимости от $U_{\rm cm}$. Как видно, начиная с $U_{\rm cm} \approx 27$ В, зависимость выходит на плато, что является нижней границей диапазона рабочих точек.

Зависимость относительного энергетического разрешения детектора от напряжения питания SiPM для энергии γ -кванта 662 кэВ отличается от аналогичной для γ -кванта 32 кэВ: зависимость становится более пологой в диапазоне 27–28В, но не выходит на плато и продолжает убывать на

Рисунок 3.3 — Зависимость относительного энергетического разрешения детектора от напряжения питания SiPM для E = 32 кэB

Рисунок 3.4 — Зависимость относительного энергетического разрешения детектора от напряжения питания SiPM для E = 662 кэB

всем диапазоне напряжений. Это может быть связано с работой SiPM в нелинейном режиме. Нелинейность отклика растет с напряжением и обусловлена ростом PDE (эффективностью регистрации фотонов) SiPM. На рисунке 3.5 представлены зависимости положения пиков полного поглощения γ -квантов с энергиями 32 кэB, 184 кэB (пик обратного рассеяния γ -кванта 662 кэB) и 662 кэB от напряжения питания SiPM.

Как видно из графика, прямая, соответствующая фотопику 662 кэВ, имеет существенно меньший коэффициент наклона, чем прямые, соответствующие пикам обратного рассеяние (E = 184 кэВ) и характеристического излучения $^{137m1}Ba$ (E = 32 кэВ). Это является следствием отклонения зависимости амплитуды отклика детектора от линейной. Разница коэффициентов наклона прямых для E = 32 кэВ и E = 184 кэВ также может быть связана с нелинейностью отклика SiPM.

Рисунок 3.5 — Нормированная на энергию зависимость положений пиков зарядового спектра на шкале анализатора от напряжения питания SiPM для энергий 32 кэB, 184 кэB, 662 кэB

4. ВРЕМЕННОЕ РАЗРЕШЕНИЕ ДЕТЕКТОРА

4.1. ИССЛЕДОВАНИЕ ВРЕМЕННОГО РАЗРЕШЕНИЯ УСТАНОВКИ

4.1.1. СХЕМА ЭКСПЕРИМЕНТА

Для изучения зависимости временного разрешения установки в режиме коррелированных импульсов СТАРТ и СТОП от напряжения питания SiPM была использована экспериментальная установка, схема которой представлена на рисунке 4.1.

Рисунок 4.1 — Схема установки

В качестве источника сигнала использовался детектор на основе сцинтилляционного кристалла LaBr₃(Ce) и SiPM SensL FC30035. Источник питания — AKTAKOM ATH–2031. Сигнал от SiPM подавался через емкостной выход схемы питания на линейные разветвитель, откуда подавался на входы 1 и 2 осциллографа LeCroy Waverunner 640Zi, а также на второй разветвитель. Далее, сигналы со второго разветвителя подавались на дискриминаторы верхнего уровня (ДВУ) — D3 и D4, а также на дискриминаторы нижнего уровня (ДНУ) — D1 и D2, длительность сформированных сигналов — 20 нс. Порог ДНУ устанавливался между амплитудой, соответствующей основанию фотопика 662 кэВ ^{137}Cs , и амплитудой, соответствующей половине его высоты. Порог ДВУ — между амплитудой половины высоты фотопика и амплитудой основания (см. рисунок 4.2).

Рисунок 4.2 — Схематическое изображение диапазона порогов ДНУ и ДВУ

Сформированные сигналы с дискриминаторов нижнего уровня подавались на схему совпадений СС1 через линии задержки (задержка на 30 нс). Линии задержки введены для того, чтобы успели сформироваться и обработаться сигналы с дискриминаторов верхнего уровня. Сигналы, сформированные ДВУ, свидетельствуют о превышении верхнего порога амплитудного окна. Попадая на схему совпадений СС2, они формируют логическую единицу стандарта NIM, которая подается на вход вето СС1. В этом случае триггерующий импульс не формируется на СС1 и событие игнорируется. В противном случае, уровень сигнала находится внутри амплитудного окна и СС1 подает синхронизирующий импульс на третий вход осциллографа.

Осциллограф LeCroy Waverunner 640Zi оснащен анализатором импульсов, с помощью которого были получены распределения величины $\Delta \tau = \tau_2 - \tau_1$, где τ_1 и τ_2 — времена достижения сигналами с первого и второго каналов осциллографа уровня 50% амплитуды, для диапазона напряжений питания SiPM 25.5–29.5 В с шагом 0.5 В.

4.1.2. ОБРАБОТКА И РЕЗУЛЬТАТЫ ЭКСПЕРИМЕНТА

По результатам обработки временных спектров был построен график зависимости временного разрешения установки в режиме коррелированных импульсов СТАРТ и СТОП от напряжения питания SiPM, представленный на рисунке 4.3. Зависимость аппроксимирована функцией $f(x) = e^{C_1 x + C_2} + C_3.$

Рисунок 4.3 — График зависимости временного разрешения установки в режиме коррелированных импульсов СТАРТ и СТОП от напряжения питания SiPM

График показывает, что кривая выходит на плато, начиная с $U_{\rm CM} \approx 27$ В, что накладывает нижнюю границу на выбор рабочей точки для дальнейших исследований. Временное разрешение установки в режиме коррелированных импульсов СТАРТ и СТОП для рабочей точки $U_{\rm CM} > 27.0$ В соответствует ~130 пс. Так как при напряжении питания выше 28.5 В наблюдался рост влияния шумов, то рабочая точка может быть выбрана в диапазоне 27.0–28.5 В.

ЗАКЛЮЧЕНИЕ

Детектор на основе сцинтилляционного кристалла LaBr₃(Ce) и SiPM имеет относительное энергетическое разрешение $\delta \approx 8.5\%$ для γ -линии изотопа ¹³⁷Cs при выборе рабочей точки по напряжению питания SiPM в диапазоне 27.0–28.5 В. Временное разрешение установки в режиме коррелированных импульсов СТАРТ и СТОП от исследуемого детектора соответствует ~130 пс при таком выборе рабочей точки. Полученный диапазон выбора рабочей точки в дальнейшем будет использован для изучения временного и пространственного разрешений пары детекторов на основе сцинтиллятора LaBr₃(Ce) и SiPM в составе схемы совпадений, что позволит проанализировать возможность применения данных детекторов в ПЭТ-томографии.

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- 1. R. Z. Nuclear Medicine: Radioactivity for Diagnosis and Therapy. // EDP Sciences. 2007. т. 89. с. 173.
- Gutfilen B., Valentini G. Radiopharmaceuticals in Nuclear Medicine: Recent Developments for SPECT and PET Studies // BioMed research international. — 2014. — т. 2014. — с. 426892.
- 3. Saha G. Basics of PET Imaging: Physics, Chemistry, and Regulations. 2010. c. 60–64.
- 4. Validation of a NaI(Tl) and LaBr 3 (Ce) detector's models via measurements and Monte Carlo simulations / I. Mouhti [и др.]. 2018.
- Andrii Nagai Nicoleta Dinu-Jaeger A. P. Silicon Photomultiplier for Medical Imaging -Analysis of SiPM characteristics // Phys. Rep. — 2008. — т. 66. с. 23.
- Sunil Kumar Sushil Singh Chauhan V. B. A Proof-of-principle for Time-Of-Flight Positron Emission Tomography Imaging // Phys. Rev. Lett. – 2015. — т. 121. — с. 15.
- Zanzonico P., Heller S. The intraoperative gamma probe: Basic principles and choices available // Seminars in nuclear medicine. — 2000. — т. 30. с. 33—48.