МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ЯДЕРНЫЙ УНИВЕРСИТЕТ «МИФИ»

ОТЧЕТ

О НАУЧНО-ИССЛЕДОВАТЕЛЬСКОЙ РАБОТЕ

«Исследование возможности получения наблюдательных ограничений на класетры ПЧД из эффектов ионизации»

Студент	М.В. Галаев
---------	-------------

Руководитель НИР _____К.М. Белоцкий

Москва 2020

Содержание

Введение

1	Литературный обзор последних ограничений по эффекту иони-		
зации на ПЧД в массовом диапазоне $10^{13}~{ m g} < { m M}_{{ m \Pi}{ m H}{ m J}} < 10^{1}$			4
	1.1	Обзор работы Carr 2020 года	4
	1.2	Ограничения рассмотренные в работе Poulin 2017 года	5
2	Аки	креция газа на кластер ПЧД	9
	2.1	Постановка задачи	9
	2.2	Методы вычисления	10
	2.3	Численные расчет и оценка	12
За	Заключение		13
Cı	исо	к литературы	14
Пj	Іриложение А		16

 $\mathbf{2}$

Введение

Проблема существования первичных черных дыр в последнее время приобрела очень большое значение [6]. В первую очередь это связанно с открытием ранних квазаров и слияния черных дыр, зарегестрированных по гравитационным волнам LIGO и Virgo [17, 18, 19]. В связи с этим становится важным изучение широкого спекрта возможных масс Первичных Черных Дыр (ПЧД), который может простираться в достаточно широком диапазоне. В каждом диапазоне значение масс могут возникать свои эффекты по которым эти ПЧД можно искать. В данной работе рассматривается эффект от ПЧД легких масс, в диапазоне 10^{13} g < $M_{\Pi 4}$ < 10^{17} g. При таких массах ПЧД способны ионизировать окружающее вещество. Это может происходить в ранней Вселенной при $z \sim 10$. Появляются новые ограничения на такие легкие черные дыры. Изучению этого вопроса посвещяна настоящая работа. Помимо этого, первичные черные дыры способны собираться в кластеры. Внутрь этого кластера может захватываться обычное вещество. Здесь могут проявляться сразу два эффекта: ПЧД будут испаряться засчет механизму Хокинга и ионизовывать вещество, а также эффект акреции на черные дыры. Эффект аккреции будет происходить внутри кластера, между изначально захваченным веществом и черными дырами кластера, а так же возможна аккреция на кластер вещества из вне. Количество вещества будет уменьшаться и при этом выделяться доплнительная энергия, приводящая к дополнительному тепловому эффекту, в том числе и к ионизации. На основе изученных работ, представленных в первой части данного исследования, была сформулированна задача, методы ее решения, а так же дана оценка возможностей и перспектив ее решения.

Целью работы является исследование ограничений на класетры ПЧД из эффектов ионизации. Для достижения этой целибыли поставлены следущие задачи:

- Анализ работ по эффектам ионизации от ПЧД малых масс. Задачей являлось изучение работ на эту тему, их сравнение, и оценка их непротиворечивости для масс диапазона 10^{13} g $< M_{\Pi ЧД} < 10^{17}$ g.
- Во второй части настоящей работы выполнялась задача по поиску и оценке вклада ионизации в кластере ПЧД, связанный с эффектом испарения Хокинга и аккреции захваченного газа. Был найден метод ее решения и выполненна первая оценка потери массы ПЧД в кластера за счет испарения и массы газа поглощенного ПЧД внутри кластера.

1 Литературный обзор последних ограничений по эффекту ионизации на ПЧД в массовом диапазоне 10^{13} g < М_{ПЧД} $< 10^{17}$ g

1.1 Обзор работы Carr 2020 года

В своей работе Carr [8] обновляет ограничения на первичные черные дыры в диапазоне масс 10^5 до 10^{50} g. Подчеркивает значимость ограничения $\sim 10^{15} q$ т.е. ПЧД, меньше указанной массы, испарились бы к настоящему времени изза излучения Хокинга, ПЧД массами более $\sim 10^{15} g$ подвержены множеству ограничений, связанных с гравитационным линзированием, динамическими эффектами, влиянием на крупномасштабную структуру, аккрецией и гравитационными волнами. Рассматривает гравитационные и астрофизические эффекты неиспаряющихся первичных черных дыр. Следуя из условия, что ПЧД не могут быть настолько многочисленными, чтобы приводить к реионизации раньше, чем $z \sim 6$, вводит любопытное ограничение на ПЧД, связанное с реионизацией галактической среды испаряющимися ПЧД: $M \geq 2 \cdot 10^{13} {\rm g}$ [2]. Так же отмечает, что в работе Белоцкий и др. [6] объяснили реионизацию предгалактической среды испаряющимися ПЧД, показали что ПЧД с монохроматическим распределением масс около 5×10^{16} g могут обеспечить это. Утверждая, что эффект реионизации и вклад в темную материю могут быть одновременно усилены расширенным распределением массы вокруг той же массы. Отемечает, что Мак и Уэсли [3] показали, что будущие наблюдения 21-сантиметрового излучения нейтрального водорода с большим красным смещением могут наложить важные ограничения на ПЧД в диапазоне масс $5 \times 10^{13} g < M < 10^{17} g$. В основном это связано с тем, что фотоны излучаются из ПЧД во время пика 30 < z < 300 в диапазоне энергий, в котором межгалактическая среда имеет малую оптическую толщину. Любой

процесс, который нагревает межгалактическую среду в этот период, будет давать сигнал, но ионизирующий поток фотонов, электронов и позитронов от ПЧД будет создавать отличительную особенность в яркостной температуре 21 см. ПЧД с $5 \times 10^{13} g < M < 10^{14} g$ испаряются при 30 < z < 90и могут повысить яркостную температуру 21 см, тем самым уменьшая поглощение на фоне реликтового излучения. ПЧД с $M\sim 10^{14}g$ повысили бы спиновую температуру выше реликтового излучения, так что линия 21 см появляется скорее в виде излучения, чем поглощения. ПЧД с $10^{14}g < M < 10^{17}g$ имели бы менее выраженный эффект. Недавно в Эксперименте по обнаружению глобальной эпохи сигнатуры реионизации (EDGES) сообщалось об обнаружении сигнала поглощения на 21 см более сильного, сравнимо с астрофизическими ожидания. Кларк и др. [4, 8] изучают влияние излучения от распада ТМ и ПЧД на температуру излучения 21 см в эпоху реионизации и накладывают ограничение на распадающуюся темную материю и инжекцию энергии ПЧД в межгалактическую среду, которая может нагревать нейтральный газообразный водород и ослабляют сигнал поглощения 21 см. Они требуют, чтобы нагрев нейтрального водорода не отменял сигнал поглощения 21 см. Для конечных состояний $e\gamma\gamma$ они находят строгие ограничения в 21 см, которые могут быть более жесткими, чем нынешние ограничения для внегалактических диффузных фотонов.

1.2 Ограничения рассмотренные в работе Poulin 2017 года

В работе Vivian Poulin [7] ограничения оказались очень конкурентоспособными по сравнению с γ -фоновыми в диапазоне от 10^{15} g до $10^{16,6}$ g и даже доминирующими в диапазоне от $10^{13,5}$ g до $10^{14,4}$ g. Они не распространяли исследование на более низкие массы, так как подобное приближение заведомо обречено на неудачу, однако ожидают, что ограничения быстро исчезнут

при меньших массах. Ограничение в диапазоне малых масс, хотя и очень сильное, не является просто продолжением: «плечо» ниже 10¹⁵ g обусловлено совокупным влиянием новых каналов типа пар мюонов (которые, будучи менее эффективными в высвобождении энергии, снижают «полезную» эмиссию коэффициента разветвления), и несколько менее эффективное вплане энергозатрат при соответственно более высоких энергиях. Обращают внимание, на то, что сходство полученных ими ограничений с ограничениями, полученными Карром, является случайными: данные, доступные почти десять лет назад, были значительно менее ограничивающими, но обработка сделанная Карром переоценивала ограничивающую силу из-за ряда приближений: например они не следовали собственно временной эволюции массы; они не оценили эффективность выделения энергии, что завышает оценку выделения энергии в 2–3 раза в зависимости от массы ПЧД. Наконец, ограничения не так хороши, как для фоновых γ -лучей в диапазоне $10^{14,4}$ g - 10^{15} g. Тем не менее, все еще есть возможности улучшения текущего ограничения, особенно для масс ниже 10¹⁵ g. Так же отмечает, что в работе Белоцкого [6] сделана оценка воздействия ПЧД в диапазоне масс 10¹⁶ g - 10¹⁷ g. Они использовали эффективное приближение «на месте», вычисляя значение эффективности поглощения, при некоторых упрощенных предположениях относительно потерь энергии и спектров испаренных частиц. Однако то, что может привести к самому большому различию в нашей работе, заключается в том, что они вычисляют $x_e(z)$ по формуле Caxa. Следовательно, энергия, вводимая в среду, влияет на историю ионизации только за счет повторного нагрева, что, в свою очередь, приводит к очень разной эволюции x_e. Наши более точные вычисления, которые учитывают как влияет энергия инжекции посредством нагрева и ионизации (а также возбуждения) атомов, показывает, что эволюция доли свободных электронов значительно отличается от уравнения Саха, при этом реионизация начинается уже при красном смещении в несколько сотен. Таким образом, считают, что ограничения работы Белоцкого [6] не

следует считать количественно надежными.

2 Аккреция газа на кластер ПЧД

Рассмотрим задачу изучения возможных эффектов ионизации в акреции газа на кластер ПЧД [1]. Задача интересна тем, что рассматривая реионизацию Вселенной, в научных трудах считается, что они распространены по Вселенной равномерно, поэтому интересно оценить усилится ли эффект, при условии, что черные дыры будут сконцентрированны в относительно небольшом пространстве - кластере. В данной задаче будет оцениваться эффект ионизации только в пределах кластера. Кластеры первичных черных дыр способны захватывать вещество, которое будет ионизироваться излучением Хокинга и вносить свой вклад в аккрецию этого газа на ПЧД. Для простоты предположим что масса кластера равна массе газа. Глобальная цель задачи рассмотреть зависимость эффекта испарения и аккреции, какой вклад оно будет оказывать на вещество, возможен ли эффект подогрева за счет испарения и аккреции, какая картина будет наблюдаться при разных начальных температурах, массах кластера и захваченного газа.

2.1 Постановка задачи

В кластере ПЧД имеют внутри распределение по массе, в самом простейшем случае это распределение выглядит как $\frac{1}{M^2}$ от минимальной до максимальной массы отдельной ПЧД, соответственно. К примеру представим на [Puc. 1] распределение в уже упомянутом выше диапазоне масс 10^{15} g < M_{ПЧД} < 10^{17} g. Нижняя граница этого диапазона примечательна тем, что ПЧД излучают в основном электроны через механизм Хокинга, тогда как ПЧД массами 10^{14} g < M_{ПЧД} < 10^{15} g способны также излучать мюоны, а дыры М_{ПЧД} < 10^{14} адроны. Вклады этих частиц необходимо учитывать в эффекте ионизации акрецирующего на ПЧД газа. Для первичной оценки будет удобно взять вклад только электронной ионизации. Так же параметром кластера является размер кластера, зависимость размера от массы эквивалентна $M^{\frac{1}{3}}$.

Первым шагом необходимо оценить зависимость темпов испарения черных дыр от темпов натекания вещества.

Так же в будущем предпологается, рассматреть более сложные вариации этой задачи, к примеру необходимо будет учитывать возможное испарение ПЧД масс порядка M_{Π} чд < 10¹⁵ g, такие образом, что к нынешнему моменту врмени часть черных дыр уже испарится. Так жы не учитывается расширение Вселенной. Так как длина пробега частиц Хокинского излучение достаточно большая, электрон с определенной вероятностью, покинувший кластер продолжит ионизовать Вселенную и замедляться из-за этого, но еще больше из-за расширения Вселенной.

Рис. 1: На рисунке представленно распределение черных дыр по массе внутри кластера. В данном случае самая легкая дыра будет иметь массу порядка $\sim 10^{15}$ и наибольшую численность распространения внутри кластера, в то время как единственная черная дыра максимальной массы в кластере будет порядка $\sim 10^{17}$

2.2 Методы вычисления

Запишем основные уравнения для аккреции:

$$\begin{cases} \frac{d\overrightarrow{v}}{dt} = -\frac{1}{\rho}\nabla p + \nabla\phi \Rightarrow \frac{v^2}{2} + \frac{\gamma}{\gamma-1}\frac{p}{\rho} - \frac{GM}{R} = const = \frac{a_{\infty}^2}{\gamma-1} + \frac{v_{\infty}^2}{2} \\ a^2 = \frac{\gamma p}{\rho} \\ \frac{\nu\rho}{dt} + div\rho \overrightarrow{v} = 0 \Rightarrow \dot{M} = 4\pi R^2 \rho v = const \\ \Delta\phi = 4\pi G(\rho_{\rm BH}) \Rightarrow \phi = -\frac{GM}{R} \end{cases}$$
(1)

К данной системе применимы два случая, сферическо-симметрическая аккреция при $v_{\infty} \ll a_{\infty}$ (Задача Бонди) и цилиндрическая, при $v_{\infty} \gg a_{\infty}$. Где a_{∞} - скорость движения молекул (скорость звука).

Рассмотрим решение для сферическо-симметричной аккреции (задача Бонди): Начнем с уравнения Бернулли для газового потока:

$$\left(1 + \frac{a^2/c^2}{\Gamma - 1 - a^2/c^2}\right)^2 \left(1 - \frac{2GM}{c^2r} + v^2/c^2\right) = \left(1 + \frac{a_\infty^2/c^2}{\Gamma - 1 - a_\infty^2/c^2}\right)^2 \quad (2)$$

Как показано в работах [14, 12, 13], для стандартного газового потока скорость аккреции вещества оказывается равной:

$$\dot{M} = 4\pi \left(\frac{2}{5-3\gamma}\right)^{\frac{5-3\gamma}{2(\gamma-1)}} \frac{(GM)^2}{a_{\infty}^3} \rho_{\infty} \sim \pi R_G^2 \rho a_{\infty} \tag{3}$$

$$\dot{M} = 4\pi r^2 v \rho = 4\pi \left(\frac{GM}{a_{\infty}^2}\right)^2 \lambda \rho_{\infty} a_{\infty} \tag{4}$$

Отсюда плотность для газа, с учетом показателя адиабаты состояния газа $\Gamma=4/3;$ при $a_\infty^2< a^2\ll c^2,$ тогда $v^2=2GM/r$

$$\frac{\rho(r)}{\rho_{\infty}} \approx \frac{\lambda}{4} \left(\frac{c}{a_{\infty}}\right)^3 \left(\frac{r_H}{r}\right)^{3/2} \tag{5}$$

2.3 Численные расчет и оценка

Проведем численный расчет [Приложение А] начальной задачи для оценки масс испарившихся у черных дыр кластера, и масс натекающего вещества с учетом ионизации захваченного кластером газа в системе компьютерной алгебры Wolfram Mathematica.

Рис. 2: График испарившихся масс черных дыр кластера (зеленым), и масс вещества натекающего на черные дыры с учетом ионизации газа (синим).

Пока рано давать качественную оценку вклада ионизации в этой задаче. Для проведения дальнейших исследований необходимо рассмотреть особенности пробегов частиц механизма Хокинга, учесть различный вклад аккреции и многих переменных параметров как самого кластера, так и газа.

Заключение

В данной рабоет было представленно исследование ограничений на класетры ПЧД из эффектов ионизации.

- В качестве изучательной части, были подробно рассмотрены научные труды по ионизации на первичные черные дыры в диапазоне масс 10¹³ g < M_Пчд < 10¹⁷ g. Выполнен литературный обзор на эти статьи, была описана взаимосвязь статей и некоторые аспекты различия подходов к формированию ограничений.
- Был изучен механизм аккреции на ПЧД, сформулированна задача с кластером, найден метод ее решения и даны первые оценки. При этом были численно получены оценки масс испарения и натекания вещества на кластер в среде Wolfram Mathematica. Результат работы может быть использован для будущих решений широкого класса задач с аккрецией захваченного газа кластером ПЧД в перспективе оценки вклада ионизации такой системы.

Список литературы

- M. Y. Khlopov, S. G. Rubin, and A. S. Sakharov, "Primordial structure of massive black hole clusters," Astropart. Phys. 23 (Mar., 2005) 265–277, arXiv:astro-ph/0401532.
- [2] B. J. Carr, K. Kohri, Y. Sendouda, and J. Yokoyama, Phys. Rev. D 81, 104019 (2010).
- [3] K. J. Mack and D. H. Wesley, (2008), arXiv:0805.1531 [astro-ph].
- [4] S. Clark, B. Dutta, Y. Gao, Y.-Z. Ma, and L. E. Strigari, Phys. Rev. D98, 043006 (2018), arXiv:1803.09390 [astro-ph.HE]
- [5] H. Tashiro and N. Sugiyama, Phys. Rev. D78, 023004 (2008)
- [6] K. M. Belotsky and A. A. Kirillov, JCAP 1501, 041 (2015), arXiv:1409.8601 [astro-ph.CO].
- [7] V. Poulin, P. D. Serpico, F. Calore, S. Clesse, and K. Kohri, Phys. Rev. D96, 083524 (2017), arXiv:1707.04206 [astro-ph.CO].
- [8] B. Carr, K. Kohri, Y. Sendouda, and J. Yokoyama, "Constraints on primordial black holes," (2020)
- [9] S. Clark, B. Dutta, Y. Gao, L. E. Strigari, and S. Watson, Phys. Rev. D95, 083006 (2017), arXiv:1612.07738 [astro-ph.CO].
- [10] X.-H. Fan, C. L. Carilli, and B. G. Keating, Ann. Rev. Astron. Astrophys. 44, 415 (2006), arXiv:astro-ph/0602375.
- [11] B. J. Carr and J. H. MacGibbon, Phys. Rept. 307, 141 (1998).
- [12] Shapiro, S.L.; Teukolsky, S.A. Black Holes, White Dwarfs and Neutron Stars: The Physics of Compact Objects; John Wiley and Sons, Inc.: Hoboken, NJ, USA, 1983.

- [13] Bondi, H. On spherically symmetrical accretion. Mon. Not. R. Astron. Soc. 1952, 112, 195–204
- [14] Maxim Khlopov, Biplab Paik and Saibal Ray, "Revisiting Primordial Black Hole Evolution" (2020)
- [15] S. W. Hawking, Nature 248, 30 (1974)
- [16] P. A. R. Ade et al. (Planck), Astron. Astrophys. 594, A13 (2016), arXiv:1502.01589 [astro-ph.CO].
- [17] B. P. Abbott et al. (Virgo, LIGO Scientific), Phys. Rev. Lett. 116, 241103 (2016), arXiv:1606.04855 [gr-qc].
- [18] B. P. Abbott et al. (Virgo, LIGO Scientific), (2016), arXiv:1602.03842 [astroph.HE].
- [19] B. P. Abbott et al. (LIGO Scientific, Virgo), (2018), arXiv:1811.12907 [astroph.HE].

Приложение А

Кластер первичных черных дыр

Вводим константы

```
In[1]:= me = 0.000511; (*масса электрона в ГэВ*);

Mpl = 1.2 * 10^19; (*масса планка в ГэВ*)

G = 1 / (Mpl^2); (*грав постоянная в ГэВ-2*)

Y = 4 / 3; (*постоянная адиабаты*)

lambda = ((1/2)^(Y + 0.5 (Y - 1))) * ((5 - 3 Y) / (4))^(3Y - (5/2) * (Y - 1));

r = 1; (*радиус кластера в пк*)

rp = r * (3.1 * 10^18) * 5.0 * 10^13; (*радиус кластера в ГэВ-1*)

V = \frac{4}{3} Рі*rp^3; (*объем кластера в ГэВ-3*);

число пи
```

Ищем массу всего кластера

```
In[64]:=
```

Mcluster = Mcl * 5.6 * 10^23; (*масса кластера в ГэВ*)

Mgas = Mcluster;

Print["Macca кластера =", Mcluster]

печатать

rho = 🙀 ; (*плотность газа в ГэВ 4, считаем что М газа = М кластера*)

Масса кластера =2.5789×10⁴¹

Ищем вклад ионизации

In[69]:= Z = 1; (*3aprA AApa B-Ba Через который летит электрон, допустим у нас водород*)Is = (13.5*Z) *1.6* (10^ (-12)) *6.3*10^2; (*средний ион потенциал в ГэВ*) alpha = 1/137; e = alpha^0.5; Na = 6.02*10^23; (*постоянная авогадо*) Mh = 5.6*10^23; (*молярная масса водорода в ГэВ/моль*) nu = Mcluster /Mh; (*количество вещества в газе*) ne = nu * $\frac{Na}{V}$; (*электронная плотность вещества в ГаЗе*) gamma [T_{-}] := $\left(\left(\frac{T}{me}\right)^2 + 1\right)^0.5;$ (*релятивисткая $\gamma*$) v[T_{-}] := $\left(1 - \frac{1}{(gamma[T])^{2}}\right)^0.5;$ (*скорость электрона*) Ionpoteri [T_{-}] = 2*Pi * e^4 * $\frac{ne}{me * v(T] * v(T]} *$ $\left(\log\left[\frac{me * v(T] * v(T] * T}{2x I_5^2 + 2x I_5^2 + 2x I_5^2 + 2x I_5^2}\right] - \log[2] * \left(\frac{2}{gamma[T]} - 1 * v[T] * v[T]\right) + 1 - v[T] * v[T] + \frac{1}{8} \left(1 - \frac{1}{gamma[T]}\right)^2\right) \frac{1}{rho};$

(*ион потери на ед пути 1 электрона*) Ionpoteri[me]

Out[80]= 28.5233

L

Ищем энергию, оставленную электроном в кластере In[28]:= x0 = 0; T0 = 10; (*начальная энергия вылетевшего электрона в ГэВ*) Rprobeg = rp; (*допустим пробег – радиус кластера в ГэВ-1*) sol = NDSolve[{(T'[x]) == -Ionpoteri[T[x]], T[x0] == T0}, T, {x, 0, Rprobeg}]; [численно решить ДУ deltaE = T0 - rho * Evaluate[T[Rprobeg] /. sol]; (*??*) [ВЫЧИСЛИТЬ Plot[T0 - Evaluate[T[x] /. sol], {x, 0, Rprobeg}, PlotRange → All] [график ф··· [ВЫЧИСЛИТЬ [отображае···]Всё Tion = deltaE

T∞ = 1000; (*температура газа собственная в ГэВ*) a1 = (2 * (Tco + Tion) / Mgas) ^0.5 (*температура газа на бесконечности*); In[35]:= а = (2 * (Тсс) / Mgas) ^0.5 (*температура газа на бесконечности БЕЗ ВКЛАДА*); In[38]:= T[M_] := $\frac{1}{8 \star Pi \star G \star M}$; (*температура чд в ГэВ*) Misp[M_] := 1/(15360 * Pi * G^2 * M^2);(*скорость изменения массы испаренного вещества от массы черной дыры*) число пи Macr = 4 * Pi * ((G * Mgas / a^2) ^2) * lambda * rho * a; число пи In[41]:= Macr1 = 4 * Pi * ((G * Mgas / a1^2) ^2) * lambda * rho * a1; число пи In[42]:= (*нарисуем эти скорости отдельно*) M0 = 10^15; (*начальная масса ЧД в г*) Mbh0 = 5.6 * 10^23 * M0; (*начальная масса ЧД в ГэВ*) t0 = 0; Ma[t_] := Macr * $\frac{t}{6.6*(10^{-25})}$ *3.16*10^7;(*аккрецир масса в ГэВ время в годах*) $Ma1[t_] := Macr1 * \frac{t}{6.6 * (10^{-25})} * 3.16 * 10^{7};$ reshIsp = NDSolve[{(Isp'[x]) = $\frac{-Misp[Isp[x]]}{6.6 \star (10^{-25})} \star 3.16 \star 10^{7}, Isp[t0] = Mbh0}, Isp, {x, 0, 10^{14}}];$ $Moe[x_] := Mbh0 - \left(Mbh0^3 - \frac{1}{(15360 * Pi * G^2)} \frac{3x}{6.6 * (10^2 - 25)} * 3.16 * 10^2 \right)^2 \left(\frac{1}{3}\right);$ Ne[x_] := (1/me) Moe[x]; (*число излученных электронов в год*) IntEion[x_] := Ne[x] * deltaE; LogLogPlot[Ne[x], {x, 10^2, 10^15}, PlotRange → All] график функции в лог-лог масштабе отображае… всё $\label{eq:logLogPlot[Moe[x], {x, 10^{11, 10^{14}}, PlotRange \rightarrow \{ \{10^{11, 10^{13}}, \{10^{37, 10^{75}}\} \}];}$ график функции в лог-лог масштабе отображаемый диапазон графика LogLogPlot[{Ma[x], Mbh0 - Evaluate[Isp[x] /. reshIsp], Moe[x]}, {x, 10^10, 10^15}, PlotRange → All] график функции в лог-лог мас… вычислить отображае… всё 1041 1039 1037 Out[51]= 1035 1033 104 1010 107

