Министерство науки и высшего образования Российской Федерации Федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский ядерный университет «МИФИ» (НИЯУ МИФИ)

УДК 539.120.71

ОТЧЁТ О НАУЧНО-ИССЛЕДОВАТЕЛЬСКОЙ РАБОТЕ

Изучение функций фитирования для процесса распада бозона Хиггса в Z бозона с ассоциированным фотоном

Научный руководитель,	
к.фм.н., доцент	Е. Ю. Солдатов
Научный рукодитель	Н. В. Проклова

Студент

_____ К. К. Казакова

Москва 2020

Содержание

B	веде	ие	3
	Цел	ь работы	3
1	Уст	ройство детектора ATLAS	4
	1.1	Эксперимент ATLAS	4
		1.1.1 Система координат детектора ATLAS	4
		1.1.2 Внутренний детектор	5
		1.1.3 Система калориметров детектора ATLAS	5
		1.1.4 Мюонный спектрометр	6
		1.1.5 Триггерная система	6
2	Me	канизм Хиггса	7
	2.1	Механизмы образования бозона Хиггса	7
	2.2	Канал распада $H \to Z\gamma$	7
3	Kp	итерии отбора Монте-Карло данных	9
4	Mo	целирование сигнала	11
	4.1	Моделирование и математическое описание	11
	4.2	Результаты для суммированного сигнала	13
	4.3	Результаты для несуммированного сигнала	15
За	аклю	чение	18
C	писо	к используемых источников	19

Введение

Стандарная модель (СМ) - наиболее тщательно проработанная теория в физике элементарных частиц. То, почему частицы обладают массой, в СМ объясняется через механизм Хиггса[1]. Однако СМ не описывает гравитацию, Тёмную Энергию, Темную Материю и многие другие явления. Можно предположить, что СМ лишь часть более универсальной теории. Поэтому так важно наиболее обширно изучить все свойства бозона Хиггса, относительно недавно открытой частицы, и с максимальной точностью их описать для подтверждения СМ или же для открытия «новой физики». Любое отклонение от гипотезы приводит к теориям, выходящих за рамки СМ. Поэтому в данной работе исследуется редкий канал распада $H \rightarrow Z\gamma$, так как этот канал распада чувствителен к открытиям из-за особенностей процесса распада. Так как в последствии рассматривается распад Z бозона только в два лептона (в пару электронов либо мюонов), данный распад бозона Хиггса представляет особый интерес из-за чёткого сигнала и относительно небольшого фона от протон-протонных столкновений.

Цель работы

Целью данной работы является поиск функции, которая наиболее точно описывает смоделированный сигнал бозона Хиггса с распадом в Z бозон и фотон, а также целью является проверить, насколько хорошо данные согласуются с математическим описанием. Полученные в ходе работы результаты будут необходимы для уменьшения погрешности при переходе к описанию реальных данных с ускорителя на Большом Адронном Коллайдере (БАК), так как величина ошибки непосредственно влияет на вероятность открытия в данных. Также целью работы является проверка того, зависит ли математическое описание данных от способа образования бозона Хиггса из протон-протонных столкновений.

1 Устройство детектора ATLAS

1.1 Эксперимент ATLAS

Эксперимент ATLAS[2],[3] - это многоцелевой детектор (рис.1), предназначенный для исследования протон-протонных столкновений и столкновений тяжелых ионов, полученных с БАКа. Программа ATLAS предназначена для поиска бозона Хиггса и «новой физики», а так же для проверки КХД. Детектор радиально симметричен и состоит из разных подчастей, наложенных друг на друга концентрическими слоями. Детектор состоит из внутренней трековой системы, которая окружена сверхпроводящим соленоидом, адронного и электромагнитного калориметров, а также мюонного спектрометра.

1.1.1 Система координат детектора ATLAS

В детекторе используется несколько основных систем отчёты, одна из них - прямоугольная система координат. Начало отчёта выбирается в точке взаимодействия, оси расположены так, что ось x направлена к центру БАКа, ось z направлена вдоль движения пучка, а ось y направлена вверх. В циллиндрической системе координат вводятся полярный угол θ - отсчитывается от положительного направления оси z, и азимутальный угол ϕ - определяется в плоскости 0xy вокруг оси пучка. Псевдобыстрота задается формулой (1.1).

$$\eta = -\ln\left(\operatorname{tg}\left(\frac{\theta}{2}\right)\right) \tag{1.1}$$

Угловое расстояние между частицами определяется формулой (1.2).

$$\Delta R = \sqrt{(\Delta \eta^2 + \Delta \phi^2)} \tag{1.2}$$

Рисунок 1 — Схема детектора ATLAS и его подсистем

1.1.2 Внутренний детектор

Внутренний детектор - это первая часть детектора ATLAS, регистрирующая продукты распада. Он относительно компактный и очень устойчив к радиационным воздействиям. Детектор состоит из трех частей: пиксельного детектора, детектора переходного излучения и кремниего трекера, изображённые на рисунке (1), которые охватывают диапозон псевдобыстрот $|\eta| < 2.5$. Внутренний детектор выполняет функции трекинга заряженных частиц. Благодаря магнитному полю от соленоида детектор фиксирует треки частиц, а также восстанавливает их импульсы.

1.1.3 Система калориметров детектора ATLAS

Система калориметров охватывает диапозон псевдобыстрот $|\eta| < 4.9$ и состоит из двух компонентов: электромагнитного и адронного калориметров. Основная задача калориметров - это измерение энергии и положения пришедших в него частиц. Также система калориметров позволяет вычислить потерянную энергию E_T^{miss} . Калориметры сконструированы так, чтобы обеспечивать надежную защиту мюонной системы от проникновения электромагнитных и адронных ливней. Электромагнитный калориметр, окружающий внутренний детектор, оптимизирован для измерения

энергии фотонов и электронов. Адронный калориметр окружает электромагнитный калориметр и позволяет измерить энергию адронов.

1.1.4 Мюонный спектрометр

Мюоны проходят через описанную в разделе 1.1.3 систему калориметров почти без потерь, поэтому главной задачей мюонного спектрометра является измерение импульсов и идентификация мюонов высоких энергий. Он разработан для обнаружения заряженных частиц и измерения их импульса в пределах значений псевдобыстрот $|\eta| < 2.7$. Мюонный спектрометр состоит из камеры прецессионного слежения и триггерных камер. Камеры слежения измеряют и восстанавливают импульс мюона по виду кривизны трека, изгибаемой магнитным полем тороидных магнитов.

1.1.5 Триггерная система

Триггерная система ATLAS имеет несколько различных подсистем: триггер первого уровня и триггер высокого уровня. Главная задача триггерной системы ATLAS заключается в фильтрации интересных событий от всех остальных фоновых событий. Также триггерная система должна уменьшать частоту событий, примерно 40 кГц, до частоты, которые могут использоваться для обработки данных и для хранения, которая примерно равна 200 Гц.

2 Механизм Хиггса

2.1 Механизмы образования бозона Хиггса

Существует несколько способов образования бозона Хиггса. Поскольку БАК является протон-протонным коллайдером, основной процесс, способствующий возникновению бозона Хиггса, должен содержать глюоны, происходящие от сталкивающихся протонов. Рисунок (2) демонтрурует диаграммы Фейнмана четырех основных процессов[4] образования бозона Хиггса из протон-протонных столкновений:

- Глюон-глюонное слияние (ggF) наиболее распространенный процесс образования бозона Хиггса, требующий слияния двух глюонов, порождающих бозон Хиггса через петлю тяжелого кварка, обычно топкварка из-за его большой массы.
- Слияние векторных бозонов (VBF) процесс образования бозона Хиггса в результате слияния двух слабых векторных бозонов (W[±] или Z⁰), испускаемых кварками.
- Ассоциированное рождение вместе с W[±] или Z⁰ бозонами (WH или ZH) - процесс, в котором бозон Хиггса образовывается совместно с векторным бозоном W[±] или Z⁰, образованных из слияния двух кварков.
- Ассоциированное рождение вместе с топ-кварками (ttH) процесс, в котором бозон Хиггса рождается вместе с парами топ-кварков из расщепления двух глюонов.

2.2 Канал распада $H\to Z\gamma$

Бозон Хиггса распадается на фермионы или бозоны, и только при измерении продуктов распада возможно реконструировать информацию о наличии бозона Хиггса в детекторе. Вероятность того, какой именно будет распад пропорционален массе продуктов распада. Это означает, что

Рисунок 2 — Основные способы образовани бозона Хиггса из столкновений адронов. Глюон-глюонное слияние(слева вверху), слияние векторных бозон(справа вверху), ассоциированное рождение вместе с W^{\pm} или Z^{0} (слева внизу), ассоциированное рождение вместе с топ-кварками(справа внизу).

распады с тяжелыми частицами наблюдаются чаще. Из этого следует, что такие распады как распады в два фотона $(H \to \gamma \gamma)$ или в Z бозон и фотон $(H \to Z\gamma)$ наблюдаются крайне редко, вероятность распада составляет порядка $1.541 \cdot 10^{-3}$ [5]. Распад бозона Хиггса в Z бозон и фотон проходит через бозонные или фермионные петли, обычно W бозоны наиболее вовлечены в петлю, так как их связь с бозоном Хиггса наиболее сильная[6]. На рисунке (4) приведены диаграммы Фейнмана данных процессов.

Рисунок 3 — Диаграммы Фейнмана для канала распад
а $H\to Z\gamma$

3 Критерии отбора Монте-Карло данных

В данной работе использовались официальные наборы Монте-Карло (MK) данных, прошедшие полное моделирование и реконструкцию для геометрии детектора ATLAS для четырёх основных каналов образования бозона Хиггса: ggH, VBF, WH или ZH и ttH. Значение массы бозона Хиггса для всех смоделированных образцов было выбрано равным $m_H = 125$ ГэВ. Монте-Карло данные приведены в таблице (1). Данные о предварительном отборе лептонов и фотонов приведены в таблице (2).

Таблица 1 — Данные МК сигнала для поиска бозона Хиггса

Канал образования	Значение массы, ГэВ	Количество событий
ggH, Z(ll)gam	125	1.436M
VBF, Z(ll)gam	125	$1.155\mathrm{M}$
WmH, Z(ll)gam	125	60k
WpH, Z(ll)gam	125	60k
ttH, Z(ll)gam	125	$5.398\mathrm{M}$

Таблица 2 — Информация о предварительном отборе лептонов и фотонов, используемых в качестве входных данных

Канал	Электроны	Мюоны	Фотоны
p_T	> 10 ГэВ	> 10 ГэВ	> 10 ГэВ
$ \eta $	$ \eta < 2.47$	$ \eta < 2.7$	$ \eta < 2.37$
	кроме 1.37 $\!<\! \eta \!<\!$ 1.52	-	кроме 1.37 $\!<\! \eta \!<\!$ 1.52
$ d_o /\sigma_{d_o}$	< 5	< 3	-
$z_0\sin heta$	$< 0.5 \mathrm{~mm}$	$< 0.5 \mathrm{~mm}$	-
Идентификация	Мягкая	Средняя	Жёсткая
Изоляция	Мягкий	Мягкая	Мягкая

Основными фоновыми событиями для процесса $H \to Z\gamma$ являются процессы распада Z бозона с ассоциированным фотоном и рождение Z бозона с адронными струями, где одна струя была неверно идентифицирована детектором как фотон. На рисунке (4) приведен один из доминирующих фонов, а именно распад Z бозона с ассоциированным фотоном. Также среди смоделированных данных должен быть выбран нужный диапозон масс: 115 ГэВ $\leq m_{ll_{\gamma}} \leq 170$ Гэв и 81,2 ГэВ $\leq m_{ll} \leq 101,2$ Гэв, а также накладывается ограничение на поперечный импульс фотона $p_T^{\gamma}/m_{ll_{\gamma}} \leq 0.12$. Так как доминирующее фоновое событие имеет диапозон масс 81,2 ГэВ $\leq m_{ll} \leq 101,2$ ГэВ, это позволяют эффективно использовать ограничения по инвариантной массе чтобы убрать события с данным распадом и отделить сигнал от фона.

Рисунок 4 — Доминирующий фон процесса $H \to Z \gamma$

4 Моделирование сигнала

4.1 Моделирование и математическое описание

Выбор инвариантной массы $m_{ll\gamma}$ позволяет эффективно отделить форму сигнального распределения от фонового. Распредения сигнала и фона параметризуются аналитическими функциями. В данной работе была проведена параметризация только сигнального распределения. Основные параметры, которые входят в финальное фитирование процесса $H \to Z\gamma$:

- Пик распределения инвариантной массы бозона Хиггса
- Значение σ_{CB} для оценки справедливости полученных результатов
- Отношение фитирования к моделированию сигнала

Среди всех смоделированных данных для каждого способа образования бозона Хиггса (таких как ggH, VBF, ttH, WH или ZH) распределение по инвариантной массе трёх частиц для резонансной массы m_H хорошо описывается функцией Double-Sided Crystal Ball (DSCB). За распределение инвариантной массы была взята сумма всех способов образования бозона Хиггса с соответствующей нормировкой с учетом их поперечного сечения. Центральная часть функции DSCB описывается функцией Гаусса, а оба хвоста задаются степенным законом. Функция задается как (4.1):

$$N \cdot \begin{cases} e^{t^2/2}, & -\alpha_{Lo} \leq t \leq \alpha_{Lo} \\ \frac{e^{-0.5\alpha_{Lo}^2}}{\left[\frac{\alpha_{Lo}}{n_{Lo}} \left(\frac{n_{Lo}}{\alpha_{Lo}} - \alpha_{Lo} - t\right)\right]^{n_{Lo}}, & t < -\alpha_{Lo} \\ \frac{e^{-0.5\alpha_{Hi}^2}}{\left[\frac{\alpha_{Hi}}{n_{Hi}} \left(\frac{n_{Hi}}{\alpha_{Hi}} - \alpha_{Hi} + t\right)\right]^{n_{Hi}}, & t > \alpha_{Hi} \end{cases}$$
(4.1)

где $t = \Delta m_H / \sigma_{CB}$, $\Delta m_H = M_{Z\gamma} - \mu_{CB}$, N - нормировочный параметр, μ_{CB} - пик распределения Гаусса, σ_{CB} - ширина распределения Гаусса, α_{Lo} (α_{Hi}) - точки, где функция Гаусса переходит в степенную фунцию на левом (правом) участке, n_{Lo} (n_{Hi}) - показатель степенной функции.

В данной работе также рассматривались такие функции, как Crystal Ball + Voigtan (CBPlusVoigt), Crystal Ball + Gaussian (CBGA), Crystal Ball (CB), Asymmetric Crystal Ball (ACB). Такие фукнции как Landau, Voigt и Gauss не приводятся в данной работе, так как эти функции имеют неподходящую форму распределения для описания сигнала бозона Хиггса из-за недостатка параметров. Приведем математическое описание рассматриваемых функций. Функция CBPlusVoigt задается как (4.2):

$$\begin{cases} \frac{a}{\pi a^2 + (u-t)^2}, & -\alpha \leqslant t \leqslant \alpha \\ \left(\frac{n}{|\alpha|}\right)^n \cdot exp\left(-\frac{|\alpha|^2}{2}\right) \cdot \left(\frac{n}{|\alpha|} - |\alpha| - t\right)^{-n}, & \alpha < t < -\alpha \end{cases}$$
(4.2)

где a и u нормировочные коэффициенты функции Voigt. Функция CBGA задается как (4.3):

$$\begin{cases} \frac{1}{\sigma_{GA} \cdot \sqrt{2\pi}} \cdot exp\left(-\frac{1}{2}\frac{(t-\mu_{GA})^2}{\sigma_{GA}}\right), & -\alpha \leqslant t \leqslant \alpha\\ \left(\frac{n}{|\alpha|}\right)^n \cdot exp\left(-\frac{|\alpha|^2}{2}\right) \cdot \left(\frac{n}{|\alpha|} - |\alpha| - t\right)^{-n}, & \alpha < t < -\alpha \end{cases}$$
(4.3)

где коэффициенты σ_{CB} - ширина распределения Гаусса, μ_{GA} - пик распределения Гаусса. Функция Crystal Ball задается аналогично функции (4.1) с симметричными правым и левым хвостами. Функция ACB имеет схожий вид с функцией DSCB, поэтому в работе проверяется, является ли данная функция более подходящей для описания сигнала и задаётся как (4.4):

$$N \cdot \begin{cases} e^{-0.5 \cdot t_L}, & t_L \leqslant -\alpha \\ \frac{e^{-0.5\alpha^2}}{\left[\frac{\alpha}{n}\left(\frac{n}{\alpha} - \alpha - t_L\right)\right]^n}, & t_L > -\alpha \\ \frac{e^{-0.5 \cdot t_R}, & t_R \leqslant \alpha \\ \frac{e^{-0.5\alpha^2}}{\left[\frac{\alpha}{n}\left(\frac{n}{\alpha} - \alpha + t_R\right)\right]^n}, & t_R > \alpha \end{cases}$$

$$(4.4)$$

где $t_L = \Delta m_H / \sigma_L$, $t_R = \Delta m_H / \sigma_R$ соответственно, $\sigma_L (\sigma_R)$ - ширина распределения слева (справа) от пика распределения Гаусса.

4.2 Результаты для суммированного сигнала

В работе для каждой рассматриваемой функции были подобраны наиболее подходящие параметры распределения. В качестве иллюстрации на рисунке (5) приводятся распределения, фитированные функцией DSCB без параметров и после подбора подходящих параметров. На рисунке (6) приведен сигнал распада бозона Хиггса, фитированный четырьмя функциями: CBGA, CBPlusVoigt, CB и ACB. Основные параметры фитированных функций приведены в таблице (3).

Рисунок 5 — Фитирование распределения с автоматическими параметрами (слева) и фитирование с наиболее подходящими параметрами (справа)

Рисунок 6 — Фитирование распределения функциями: CBGA (слева сверху), CBPlusVoigt (справа сверху), CB (слева снизу), ACB (справа снизу)

Функция фитирования	Значение массы, ГэВ	σ_{CB}, Γ эВ
Inclusive, DSCB	124.88	1.70
Inclusive, CBPlusVoigt	124.41	2.63
Inclusive, CBGA	124.84	1.54
Inclusive, CB	124.97	1.80
Inclusive, ACB	125.20	1.97

Таблица 3 — Значения инвариантной массы и ширины распределения для каждой функции фитирования

Основываясь на рисунках (5) и (6), а также на данных, приведенных в таблице (3) видно, что наиболее близкое значение инвариантной массы бозона Хиггса к 125.00 ГэВ и наиболее лучшее отношение фитирования к моделированию имеет функци DSCB. Поэтому можно сделать вывод, что на данный момент функция Double-Sided Crystal Ball наиболее точно описывает форму распределения сигнала бозона Хиггса с распадом в Z бозон и фотон.

4.3 Результаты для несуммированного сигнала

Основываясь на полученных результатах в параграфе 4.2, для проверки зависимости сигнала от способа образования бозона Хиггса была выбрана функция DSCB. С целью получить оценку на зависимость, были заффиксированны параметры α_{Lo} , α_{Hi} , n_{Lo} , и n_{Hi} , а параметры σ_{CB} и μ_{CB} остались произвольными. Полученные результаты фитирования представлены на рисунке (7). Основные параметры приведены в таблице (4). На основе полученных данных можно сделать вывод, что значения инвариантной массы и σ_{CB} равны значениям, полученным в суммарной сигнале (Inclusive) в пределах прогрешностей. Отклонения на графиках WH, ZH и ttH связаны с недостатком данных.

Рисунок 7 — Фитирование распределений функцией DSCB в зависисти от способа образования бозона Хиггса: ggH (слева сверху), VBF (справа сверху), WH (слева по-центру), ZH (справа по-центру), ttH (снизу)

Способ образования	Значение массы, ГэВ	σ_{CB}, Γ эВ
ggH, DSCB	124.88	1.70 ± 0.14
VBF, DSCB	124.88	1.65 ± 0.47
WH, DSCB	124.91	1.71 ± 0.86
ZH, DSCB	124.91	1.71 ± 1.18
ttH, DSCB	124.94	1.69 ± 1.31

Таблица 4 — Значения инвариантной массы и ширины распределения функции DSCB для каждого способа образования бозона Хиггса

Заключение

Цель работы заключалась в поиске наиболее подходящей функции фитирования смоделированного сигнала бозона Хиггса в распаде в Z бозон и фотон, в поиске возможных математических функций, которые лучше всего описывают данный сигнал, а также целью было выяснить, зависит ли зависит ли математическое описание данных от способа образования бозона Хиггса из протон-протонных столкновений.

Для достижения поставленных целей в результате проведенной работы были получены следующие результаты:

- 1. Было проведено фитирование смоделированного сигнала и в ходе работы была найдена функция под названием Double-Sided Crystal Ball, которая лучше всего описывает распределение инвариантной массы бозона Хиггса в Z бозон и фотон.
- Для каждого из четырёх основных механизмов образования бозона Хиггса было произведено фитирование сигнала и в ходе работы было получено, что сигнал не зависит от того, как был рожден бозон Хиггса, а зависит лишь от количества событий.

В будущем планируется сконструировать новую функцию под названием Doudle-Sided Asymmetric Crystal Ball (DSACB), так как эта функция есть совокупность двух наиболее подходящих функций для описания смоделированных данных распада бозона Хиггса, и ожидается, что данная функция будет наиболее хорошо описывать данные и будет использоваться и далее.

Список используемых источников

- Smestad L. Preparing for an Unbiased Study of the H Background with the ATLAS Experiment at LHC. — 2008. — URL: https://cds.cern. ch/record/1402030; Presented 2008.
- Collaboration A. The performance of ATLAS detector. Heidelberg : Springer, 2011. — URL: https://cds.cern.ch/record/1485681 ; Reprinted from The European Physical Journal C (articles published between summer 2010 and spring 2011).
- 3. ATLAS Collaboration. The ATLAS Experiment at the CERN Large Hadron Collider // JINST. 2008. Vol. 3. S08003.
- 4. Lamberti M. Measurement of differential cross-sections for Higgs boson production in the $\gamma\gamma$ decay channel at $\sqrt{s} = 13$ TeV with the ATLAS experiment / Lamberti Mario. 03/2020. URL: https://cds.cern.ch/record/2746556; Presented 02 Apr 2020.
- 5. Basalaev A. Search for the Higgs boson in the final state with two leptons and a photon produced in pp collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector. — 2020. — URL: https://cds.cern.ch/record/2744275.
- 6. ATLAS Collaboration. Search for the decay of a Higgs boson in the $\ell\ell\gamma$ channel in proton-proton collisions at $\sqrt{s} = 13 \text{ TeV} // \text{ JHEP}$. 2018. June. Vol. 11, arXiv:1806.05996. CMS-HIG-17-007-003. 152. 40 p. URL: https://cds.cern.ch/record/2624385 ; Submitted to JHEP.