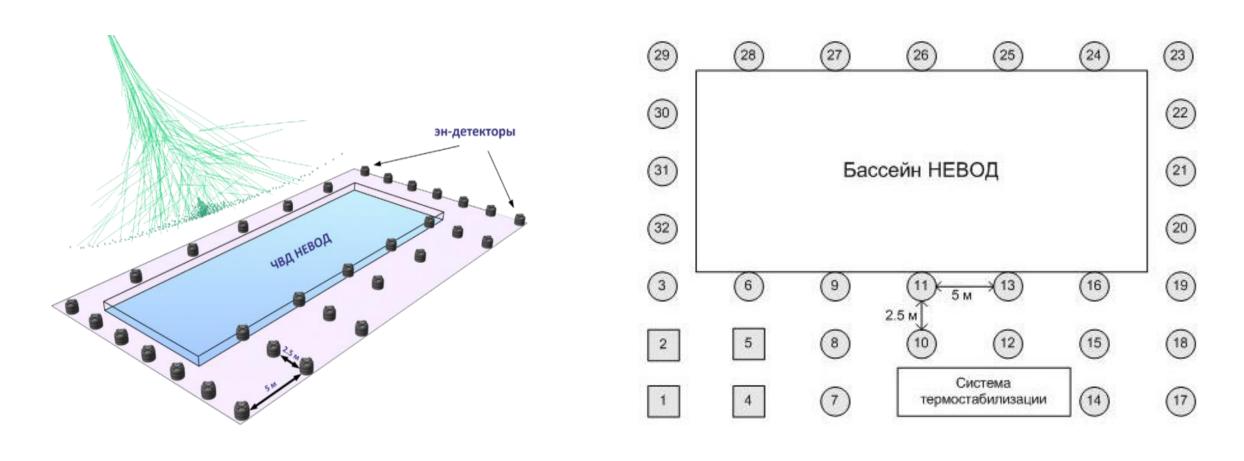
Национальный исследовательский ядерный университет «МИФИ»

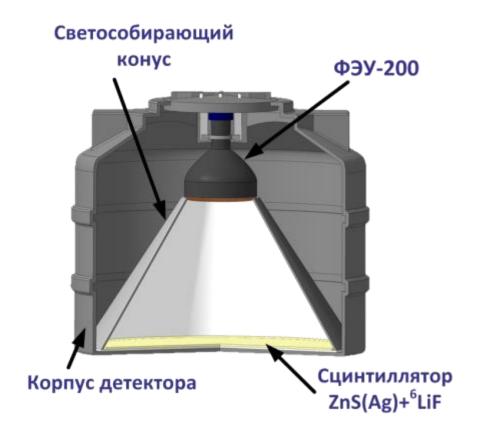
Оптимизация и автоматизация программы паспортизации установки ПРИЗМА-32

Почестнев А.Д.


Б18-102

Научный руководитель:

Громушкин Д.М.


23 декабря 2020 г.

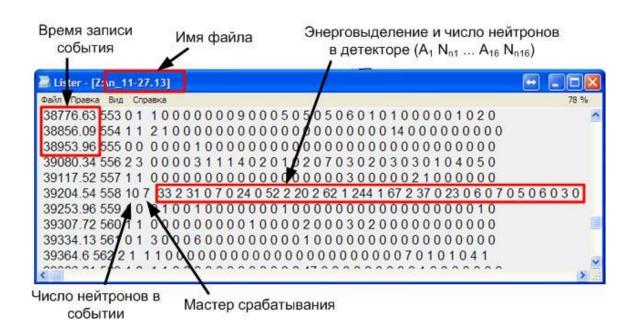
Экспериментальная установка ПРИЗМА-32

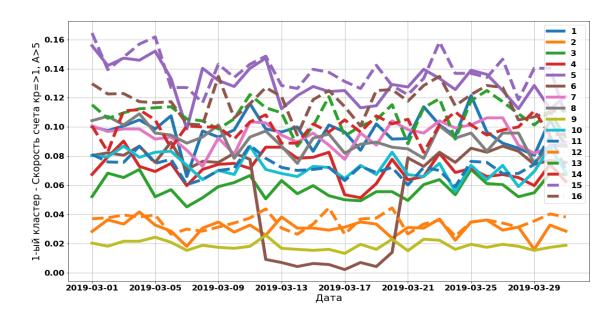
Схемы установки (детекторы 1-16 первый кластер, детекторы 17-32 второй кластер)

Эн-детектор

Конструкция нейтронного детектора

Размеры корпуса:

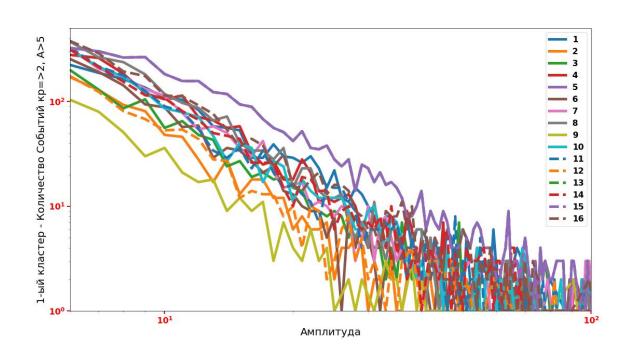

- Объем 200 л.
- Высота 570 мм.
- Диаметр 740 мм.

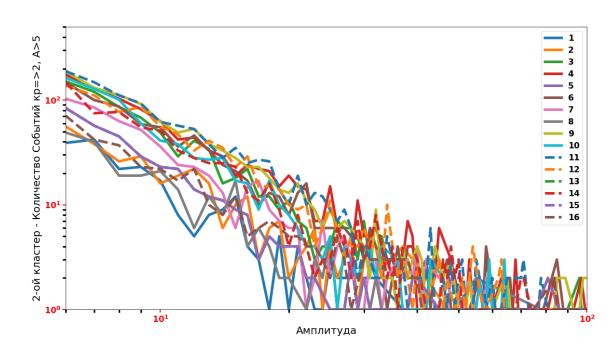

Заряженная компонента взаимодействует непосредственно со сцинтиллятором ZnS. Тепловые нейтроны захватываются ⁶Li и продукты этой реакции дают вспышку в сцинтилляторе:

$$^6Li + n \rightarrow T + \alpha + 4,78 \text{ M} \rightarrow \text{B}$$

За один акт захвата нейтрона ZnS(Ag) испускает ~ 160000 фотонов.

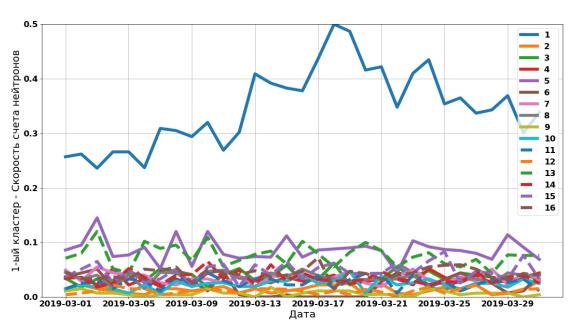
Обработка экспериментальных данных ПРИЗМА-32




Пример записи файла с основными параметрами зарегистрированных событий.

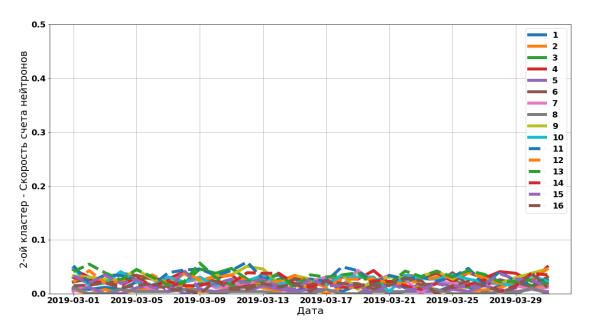
Полученная из данных файла скорость счета сигналов детекторов A ≥ 5 кластер 1

Амплитудное распределение сигналов



Амплитудное распределение сигналов от детекторов, кластер 1 (кратность ≥ 2 и $A \geq 5$)

Амплитудное распределение сигналов от детекторов кластер 2 (кратность ≥ 2 и $A \geq 5$)


Скорость счета нейтронов нулевого мастера

Скорость счета импульсов отобранных, как нейтрон, при самозапуске кластер 1

Таблица 3: Среднее число нейтронов (Nn) для детекторов установки ПРИЗМА-32 за месяц работы, нормированное на количество событий (Ns). (при самозапуске), (имп/соб)*100

Nº	Стат-	№ де	№ детектора														
	ка	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
1	mean	34.73	1.38	3.77	3.31	8.62	2.26	3.5	3.49	0.68	2.36	2.65	1.09	7.56	3.55	4.67	4.32
	std	7.26	0.69	1.11	0.88	2.1	1.77	1.0	1.02	0.49	0.92	1.06	0.54	1.9	1.14	1.61	1.1
2	mean	1.4	0.91	2.64	3.08	0.66	2.24	2.03	0.36	3.1	2.54	3.25	2.71	3.11	2.12	1.9	1.5
	std	0.63	0.61	0.91	0.88	0.51	0.8	0.95	0.38	0.99	0.91	1.16	0.77	1.14	0.94	1.01	0.83

Скорость счета импульсов отобранных как нейтрон, при самозапуске кластер 2

Пример таблицы для графиков скорости счета

Заключение

В данной работе были получены следующие результаты:

- Освоена работа с большим массивом данных
- Создано программное обеспечение, позволяющее обрабатывать данные с 2-х кластеров установки ПРИЗМА-32 и автоматически создавать её паспорт за любой срок работы
- С помощью нового ПО создан паспорт установки

В будущем планируется:

- Упростить взаимодействие с программой при создании паспорта, создав графический интерфейс
- Автоматизировать запись неисправностей