МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ЯДЕРНЫЙ УНИВЕРСИТЕТ «МИФИ»

(«ИФИМ» («ИФИ»)

УДК 539.17

ОТЧЕТ О НАУЧНО-ИССЛЕДОВАТЕЛЬСКОЙ РАБОТЕ Обработка данных с фотонного спектрометра ФОС эксперимента АЛИСА

Руководитель НИР,	
к.фм.н.	Д.С. Блау
Нач. лаборатории НИЦ Курчатовский институт	
Студент	Г.Е. Фоменко

Москва 2020

Содержание

Введение

- 1. Международный эксперимент CERN
- 2. Эксперимент ALICE
- 3. Фотонный спектрометр ФОС (PHOS)
- 4. Обработка данных)
- 5. Результаты
- 6. Заключение

Введение

Целью данной работы является анализ данных с фотонного спектрометра ФОС эксперимента АЛИСА (ALICE - A Large Ion Collider Experiment). Определение колличества фотонов и определение инвариантной массы распавшихся фотонов методом перебора всевозможных пар кластеров в калориметре с последующим вычислением числа пар под пиком в области массы пи0 мезона, которые соответствуют числу распавшихся пи0 мезонов

Международная лаборатория CERN

СЕRN (от фр. Conseil Européen pour la Recherche Nucléaire, далее ЦЕРН) международная научная организация, крупнейшая лаборатория физики высоких энергий, расположена на территории Швейцарии и Франции. До приостановки работы на модернизацию на LHC (Large Hadron Collider) действовало 8 экспериментов (ALICE, ATLAS, CMS, FASTER*, LHCb, LHCf, MoEDAL, TOTEM)

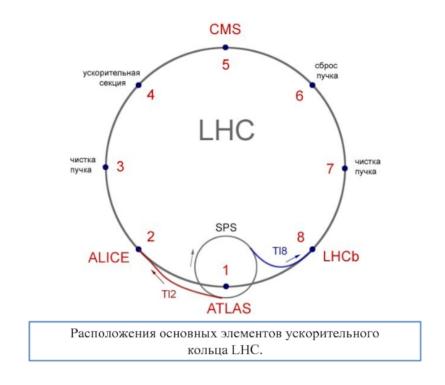


Рис. 1: Схема расположения экспериментов на LHC

Эксперимент ALICE

Эксперимент АЛИСА изначально был спроектирован для эффективного исследования столкновений тяжелых ионов (Свинец), поэтому основу данных АЛИСА составляют столкновения тяжелых ионов, имеющих энергию центра масс порядка 2.76 TeV и 5.02 TeV на пару нуклонов .

Исследования проекта "АЛИСА" затрагивают широкий спектр явлений и теорий в области изучения физики высоких энергий, затрагиваются такие вопросы как: исследование кварк-глюонной плазмы, что является основной целью эксперимента. В ходе столкновения тяжелых ионов, чаще всего не центрального, образуется такое состояние материи как кварк-глюонная плазма, в таком состоянии была наша вселенная в момент времени 10^{-5} с с момента Большого Взрыва, существование данного состояния вещества и его свойства это ключевой вопрос для объяснения явления "конфайнмент"которое заключается в том, что мы не можем наблюдать кварки в чистом виде, а только их агрегаты состоящие из двух (мезоны) , трех (барионы) и т.д. кварков.

Кварк-глюонная плазма (кварк-глюонная материя) — состояние, в которое адронная материя переходит при очень высоких температурах и плотностях. Это состояние было в первые миллисекунды после Большого взрыва. Кварки и глюоны в этом состоянии не заключены в адроны.

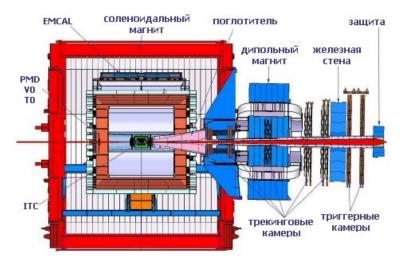


Рис. 2: Схема эксперимента АЛИСА

Фотонный спектрометр ФОС (PHOS)

Фотонный спектрометр PHOS, обеспечивает получение важной информации о материи, образующихся при взаимодействии встречных пучков тяжелых ионов высоких энергий. Он позволяет регистрировать, во-первых, прямые фотоны при энергиях выше 1 GeV. А во-вторых, π^0 и η^0 мезоны. В разработке данного спектрометра основной вклад внесли специалисты из нашей страны (НИЦ КИ, Саров)

Спектрометр представляет собой сложную сегментированную систему с площадью чувствительной поверхности 6 м2 и примерно 12500 измерительных каналов на основе сцинтилляционных кристаллов вольфрамата свинца PbWO4. Для таких целей требуются специфические кристаллы, у которых низкая радиационная длина (влияет на компактность) и малый радиус Мольера, который соответствует поперечному размеру электромагнитного ливня.

Детектор PHOS состоит из набора кристаллов PbWO4 размерами 22х22х180 мм³, ориентированными торцами 22х22 мм к потоку регистрируемого излучения. Ливни, возникающие в кристаллах под действием фотонов высоких энергий, преобразуются в сцинтилляционное световое излучение, регистрируемое ливневым фотодиодом (APD).

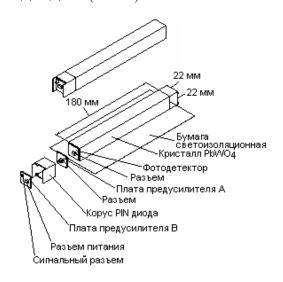


Рис. 3: Схема элемента спектрометра РНОЅ

Обработка данных

Для обработки данных, полученных с эксперимента ALICE, мною использовался мощный пакет программ, разработанный в ЦЕРНе на языке c++ - Root. В ходе эксперимента было получено прядка 74321 вхождений (entries), эти вхождения - фотоны, образованные в ходе распада π^0 мезона, и другие частицы. Методом перебора всевозможных пар был построен спектр инвариантных масс.

$$m_{\gamma\gamma} = \sqrt{(E_1 + E_2)^2 - ((P_{1x} + P_{2x})^2 + (P_{1y} + P_{2y})^2 + (P_{1z} + P_{2z})^2)}$$
 (1)

Инвариантная масса

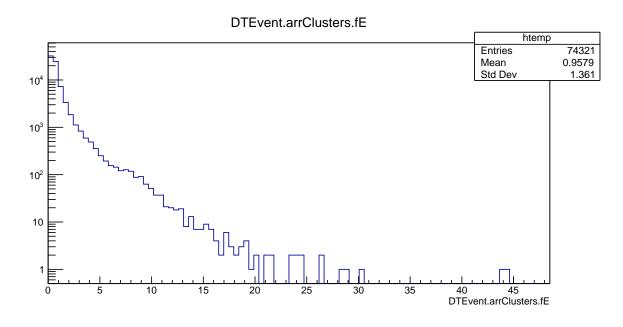


Рис. 4: Спектр энергий (log масштаб)

Результаты

Был получен спектр инвариантных масс пар кластеров, он представлен на рис.4. График был зафитирован функцией gaus+pol N=3.

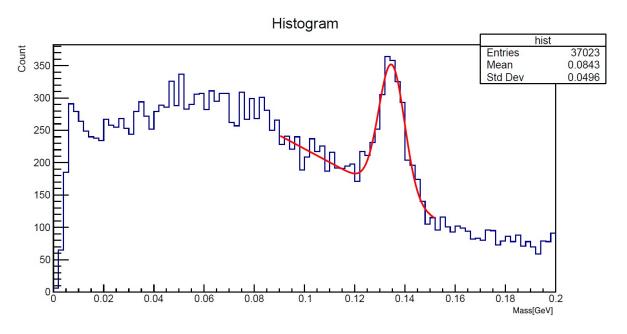


Рис. 5: Спектр инвариантных масс

Заключение

В рамках данной работы были проанализированы данные, полученные в эксперементе ALICE. Из этих данных были рассчитаны значения инвариантных масс и этими данными была заполнена гистограмма, были построены энергетические спектры кластеров и зависимость $f(\phi,\theta)$, а также получены параметры пика пи0-мезона из спектров инвариантных масс кластеров Φ OC с помощью пакета программ Root.

Используемая литература

- 1. Lectures on physics of ultrarelativistic heavy ion collisions Д.Ю. Пересунько
- 2. Лекции ЦЕРНовской летней школы
- 3. Computing School (лекции и практика по программированию)