

NATIONAL RESEARCH CENTRE «KURCHATOV INSTITUTE»

Institute for High Energy Physics of National Research Centre «Kurchatov Institute»

Status and prospects of development of the Protvino accelerator complex

Sergey IVANOV

3rd International Conference on Particle Physics and Astrophysics (3rd ICPPA 2017) Moscow, NRNU MEPHI, October 2-5, 2017

Outlook

- Generalities
- Runs
- Upgrades
- Acceleration of light ions
- Prospects of development
- Conclusion

Accelerator Complex U-70 & synchrotron U-70 per se

"Register of unique nuclear physics facilities ..." approved by the RF Government order issued on December 30, 2009, No. 2125-p

Layout, AC U-70 vs the U-70 proper

Modes:

p (default, [25] 50-70 GeV)
light-ion (C, complementary)

URAL-30/U-1.5/U-70 I-100(2 of 3)/U-1.5/U-70

Light-ion (C nuclei):

• (very) high energy

24.1-34.1 GeV/u

intermediate (though high) energy 453-455 MeV/u

In the SIS-18, SIS-100 name convention:

- LIS-233 [T⋅m]
- LIS-6.9 [T⋅m]

Photo album of the machines

Fixed-target physics and BTL network

Up to 7 beam users per a cycle

3rd ICPPA 2017

Goals of activity with accelerators

3 [4] goals:

- Regular runs: stable operation and high *p*-beam availability in the 7/24 regime, via proper maintenance
- Improve *p*-beam quality (lower ε , higher *N*, up to 3.10¹³ ppp), and relevant upgrades
- Implement a complementary light-ion program, q/A = 0.4-0.5 (carbon nuclei)
- [Assess other diversification and development options]

U-70 as an universal hadron accelerator complex

- of protons and carbon nuclei
- with high and intermediate energies
- via slow and fast extractions
- for fundamental and applied research in the "fixed target" domain

Statistics

Run

05.10.2017

Extraction (fixed target, multi-user)

Inventory:

- 1-turn/1-bunch FE
- SRE (Q38 & SSE (new))
- IT (secondary's)
- bent Si-CD SE (new)
- flat-bottom (S)SE (new)
- Mt(4-10)FE (new)

Sequential and parallel flattop sharing

2nd ½ of a flattop, IT & CD

3rd ICPPA 2017

Slow stochastic extraction

200 MHz RF system

 3^{rd} integer horizontal resonance $3Q_x = 29$ $\delta p/p_0$ резонанс быстрый дрейф ВЧ сепаратриса диффузия пучок 2 -4 -π -2 0 $+\pi$ Φ

3rd ICPPA 2017

Slow extraction & the OKA experiment

Data: run 2009/1

Technological dara from the U70

Bent-crystal (Si) deflectors

05.10.2017

Flat-bottom S(S)E

352 Gs, 1.32 GeV (p, test beam) 455 MeV/u (C)

Bragg's peak 30 cm range in a water phantom Collimator \emptyset 65 cm

- Square-wave pulses
- Low spill ripple
- Beam spill duration 0.6-1
 sec
- Easier beam sweeping and control over dose delivery to target
- Allows for patient's breath synchronization

20 Asp 2014

Longitudinal feedbacks

Accelerating system GRAPHITE, 38 ferrite-loaded 1-gap cavities, RF 5.52–6.06 MHz, 10 kV/gap

Beam quality, longitudinally

without 200 MHz spill cavity below γ_{tr}

Macurt, K., 50 X	
	Bunch length 12.2 ns
	Peak power 0.4–1 TW
	№ 4 600гс \$ 000, £м6/г. № 4 776100µс \$ 000, £м6/г. № 4 776100µс \$ 000, £м6/г.

@ 5	50 G	ieV
@ 5	50 G	ieV

	≤ 2006	> 2007–8
Bunch length (FW@0.9)	36 ns	12–15 ns
Momentum spread ∆ <i>p</i> / <i>p</i>	±1·10 ⁻³	±45·10-4

DDS RF master oscillator

3rd ICPPA 2017

Transverse feedback -1

Transverse feedback -2

3rd ICPPA 2017

Strategy of light ion program

Incremental: • ion species • along cascade	p - d - C [/100 - BTL] - U1.5 - BTL - U70 flat bottom circulation (DC
 intensity [qpp] 	transition crossing – <i>U</i> 70 ramping to flattop field 1 – 1/10 – 1/50 & low- <i>N pilot p</i> -beams prior to <i>d</i> , <i>C</i> -beams

Опорные ионы		/100, 2 p	р-ра из З 🛛 🗸 U		1.5 U		70		
q = Z, q/A = 1/2		IN	OUT	IN	OUT	IN	OUT		
<i>p, <mark>pilot</mark> beam</i>	β		0.37	724	0.9	0000	0.9999		
	<i>Β</i> ρ, Τ⋅m		1.25	558	6.8	659	233.38		
	<i>T</i> , MeV		72.	71	† 1 3	23.8	69 032★	50 000	\star
d	β		0.1862		0.7392		0.9996		
	<i>Β</i> ρ, Τ⋅m		1.1856		6.8	659	233.38		
	<i>T</i> , MeV/u		16.6	691	454	4.56	34 057	23 600	\star
С	β		0.18	362	0.7414		0.9996		
	<i>Β</i> ρ, Τ⋅m		1.17	776	6.8	659	233.38		
	<i>T</i> , MeV/u		16.6	678	45	6.53	34 063	34 063	\star
					-				

★ Goal attained

Light ion program milestones

	Deuterons ² H ¹⁺	Carbon ¹² C ⁶⁺
U1.5	16.7–448.6 MeV/u	16.7–455.4 MeV/u
	March 30, 2008	December 08, 2010
U70	23.6 GeV/u	34.1 GeV/u
	April 27, 2010	April 24, 2011
		SE @ 455 MeV/u
		April 24, 2011
		24.1 GeV/u in BTL#22 & FODS (300 GeV full)
		April 27, 2012
		Validation tests of top-energy extractions with ion beam
		April 24, 2013

1st experimental NuPh events

BTL #25 and radiobiological bench

Upgrades of the recent years

= PoA = points of attraction

Ion beam therapy center (proposal)

Pulsed *n*-source at U-1.5

1.32 GeV at peak fractional yield = 30 n/p/GeV
1-1.5·10¹³ p per pulse (6.5 sec)
29 benches (50-80 nsec) in 2 sec

Optional: 0.3-1.32 GeV (p), d, C @ 455 MeV/u max

The OMEGA project

Conclusion

Accelerator Complex *U*-70 of NRC "Kurchatov Institute" – IHEP (Protvino):

- comprises 4 machines (URAL-30, I-100, U-1.5, and U-70 itself),
- readily ensures running the fixed-target physics program
- is subject to ongoing upgrade program
- has noticeably improved quality of proton beam recently
- ensures a routine acceleration and extraction of light ions to 24-34 GeV per nucleon for high-energy nuclear physics
- now has slow extraction of 455 MeV per nucleon of ¹²C⁶⁺ beam for radiobiology and future prior-to-therapy studies
- U-1.5 and U-70 now belong to PS and (L)IS categories
- is open for a few promising options for future development