

Measurement of neutral mesons and direct photons in pp, pPb and Pb-Pb collisions with ALICE at the LHC

D.Peresunko NRC "Kurchatov institute"

for the ALICE collaboration

$$E\frac{d^3\sigma^{\mathrm{H}}}{d\vec{p}} = \sum_{a,b,c} f_a(x_1,Q^2) \otimes f_b(x_2,Q^2) \otimes D_c^H(z_c,Q^2) \otimes d\hat{\sigma}_{ab\to cX}(Q^2,x_1,x_2)$$

 $f_{a,b}$ – parton distribution functions in proton σ_{ab} – parton cross-section

 D_{c}^{H} – fragmentation function

Measurement of the hadron production cross-section provides possibility to constrain Parton Distribution Functions (f_a) and Fragmentation Functions (D_c^H) Neutral mesons can be identified in wide p_T region => restrictions on PDF/FF in wide kinematic range.

Photon detection in ALICE

Photon Conversion Method (PCM)

- Good resolution at low p_T
- Small conversion probability (~8.5%),
- Full azimuthal angle coverage, $|\eta|$ <0.9
- Small contamination of the photon sample

PHOS

- Excellent resolution at high p_{T}
- High efficiency for the photon detection
- Limited acceptance (60°) $|\eta|$ <0.135

EMCAL

- Large acceptance (100°) $|\eta|$ <0.9
- Limited energy resolution

Photon Conversion Method (PCM) uses tracking detectors and provides excellent accuracy at low p_T , electromagnetic calorimeters PHOS has good resolution at high p_T .

4

Invariant mass distributions: EMCAL and combined S.Acharya et al., arXiv:1708.08745 ×10³ Counts Counts **60**F 3.0 π^{0} : 9.0 GeV/*c* < *p*₋ < 10.0 GeV/*c* π^{0} : 30.0 GeV/*c* < *p*₋ < 35.0 GeV/*c* ALICE performance ALICE performance pp, $\sqrt{s} = 8 \text{ TeV}$ Raw real events pp, $\sqrt{s} = 8 \text{ TeV}$ Raw real events EMC-L0 trigger Mixed event BG EMC-L1 trigger Mixed event BG 50⊢ Remain. BG Remain. BG EMC PCM-EMC 2.5 BG subtracted BG subtracted Fit Fit 40 2.0 30 1.5 20 1.0

EM calorimeter EMCAL due to large acceptance has good statistical accuracy. Combined PCM+EMCAL method allows to measure π^0 up to p_{τ} ~40 GeV/c.

-10

0.05

0.1

0.25

 $M_{\gamma\gamma}$ (GeV/ c^2)

0.5

0.0

0.05

0.1

0.15

0.2

0.25

 $M_{\gamma\gamma}$ (GeV/ c^2)

0.2

0.15

EMCAL: merged clusters

$$\sigma_{long}^{2} = \frac{1}{2} (\delta_{\varphi\varphi} + \delta_{\eta\eta}) + \sqrt{\frac{1}{4} (\delta_{\varphi\varphi} - \delta_{\eta\eta})^{2} + \delta_{\eta\varphi}^{2}}$$
$$\sigma_{short}^{2} = \frac{1}{2} (\delta_{\varphi\varphi} + \delta_{\eta\eta}) - \sqrt{\frac{1}{4} (\delta_{\varphi\varphi} - \delta_{\eta\eta})^{2} + \delta_{\eta\varphi}^{2}}$$

$$\delta_{\alpha\beta} = \sum_{i} \frac{w_{i}\alpha_{i}\beta_{i}}{w_{tot}} \sum_{i} \frac{w_{i}\beta_{i}}{w_{tot}} \sum_{i} \frac{w_{i}\beta_{i}}{w_{tot}}$$
$$w_{i} = \max\left[(0, w_{0} + \ln\left(\frac{E_{i}}{E_{cluster}}\right) \right]$$

Smaller dispersion parameter σ_{short} is not sensitive to the kind of parent, but longer one σ_{long} shows clearly separated bands for single photons and π^0 .

Efficiency of difference methods

EMCAL: ϵ A is large but decrease at p_T >10 GeV/c because of cluster merging

EMCAL merged: εA is large at 15<p_T<40 GeV/c

PHOS and **conversion+EMCAL** have similar ϵA

Conversion: ϵ A somewhat smaller than one in PHOS because of small material budget in ALICE.

Peak position and width: tuning MC simulations

PCM method provides the best peak width, PHOS becomes comparable at p_T >10 GeV/c, EMCAL and EMCAL+PCM have larger width.

All measurements are consistent with each other within uncertainties both at $\sqrt{s}=2.76$ and $\sqrt{s}=8$ TeV.

Detailed comparison with theory

To make quantitative comparison, divide both data and theory by fit using Two-Component Model fit.

First NLO pQCD calculations with PDF CTEQ6M5 and FF DSS07 predict 50-100% higher π^0 yield.

11

Detailed comparison with theory (2)

NLO pQCD calculations with improved Fragmentation Functions, incorporating first ALICE results on π^0 production in pp collisions at $\sqrt{s}=7$ TeV: PDF: MSTW, FF: DSS14 show better agreement though deviate up to ~30-50% at intermediate p_T

12

η/π^0 ratio at different energies

 η/π^0 ratios measured by ALICE at different energies agree with each other and with ratios measured at lower energies. => There is some universality in meson production?

Direct photon spectra in Pb-Pb collisions

Measured direct photon spectra agree with NLO QCD predictions scaled with N_{coll} , and exceed them at p_T <4 GeV/c

Full theoretical predictions, including thermal direct photon predictions predict somewhat smaller yield, though touching systematic uncertanties.

Conclusions

- Neutral meson spectra in pp collisions provide possibility to test QCD predictions and restrict PDF and FF for identified hadrons in wide kinematic region.
- ALICE has measured neutral meson spectra in pp collisions at √s=0.9, 2.76, 7 and 8 TeV with excellent accuracy and in wide range 0.3<p_T<40 GeV/c.
- Strong suppression of the neutral pion yield at high p_T but no suppression in the direct photon yield was observed in Pb-Pb collisions at $\sqrt{s_{NN}}=2.76$ TeV.
- ALICE has collected a large amount of high quality data in Run2, so one can expect many new results.

Acknowledgements:

This work is supported by Russian Science Foundation grant 17-72-20234