Recent results from the T2K experiment

MARIA ANTONOVA ON BEHALF OF THE T2K COLLABORATION
INSTITUTO DE FISICA CORPUSCULAR (UV AND CSIC), VALENCIA, SPAIN

THE 3RD INTERNATIONAL CONFERENCE ON PARTICLE PHYSICS AND ASTROPHYSICS,
2-5 OCTOBER 2017, MOSCOW, RUSSIA
Outline

• Neutrino oscillations
• T2K experiment
• Oscillation analysis
• Recent results
• Future plans
• Summary
Neutrino oscillations

- T2K experiment
- Oscillation analysis
- Recent results
- Future plans
- Summary
Neutrino oscillations

Current efforts:
- Precise measurement of the oscillation parameters (θ_{23} octant, θ_{13})
- Neutrino mass hierarchy
 - $m_1 < m_2 < m_3$ or $m_3 < m_1 < m_2$
- Presence of CP violation and value of δ_{cp}
- “Sterile neutrino”? Exotics?

Neutrino oscillations parameterized with:
- Three mixing angles:
 $\theta_{23} \sim 45^\circ$, $\theta_{13} \sim 9^\circ$, $\theta_{12} \sim 34^\circ$
- Two squared mass differences
 $\Delta m_{21}^2 \approx 7.5 \times 10^{-5} \text{eV}^2$,
 $|\Delta m_{32}^2| \approx 2.5 \times 10^{-3} \text{eV}^2$,
 $\Delta m_{ij}^2 = m_i^2 - m_j^2$
- CP violating phase δ_{cp}

PDG 2016

Atmospheric and accelerator
$\begin{pmatrix}
\nu_e \\
\nu_\mu \\
\nu_\tau
\end{pmatrix} =
\begin{pmatrix}
1 & 0 & 0 \\
0 & \cos \theta_{23} & \sin \theta_{23} \\
0 & -\sin \theta_{23} & \cos \theta_{23}
\end{pmatrix} \begin{pmatrix}
\cos \theta_{13} & 0 & \sin \theta_{13} e^{-i\delta} \\
0 & 1 & 0 \\
-\sin \theta_{13} e^{i\delta} & 0 & \cos \theta_{13}
\end{pmatrix} \begin{pmatrix}
\cos \theta_{12} & \sin \theta_{12} & 0 \\
-\sin \theta_{12} & \cos \theta_{12} & 0 \\
0 & 0 & 1
\end{pmatrix} \begin{pmatrix}
\nu_1 \\
\nu_2 \\
\nu_3
\end{pmatrix}$

Accelerator and reactor
Flavor eigenstates

PMNS (Pontecorvo-Maki-Nakagawa-Sakata) – neutrino mixing matrix

Reactor and solar
Mass eigenstates

04.10.17
RECENT RESULTS FROM THE T2K EXPERIMENT
• Neutrino oscillations
• T2K experiment
• Oscillation analysis
• Recent results
• Future plans
• Summary
T2K experiment

Super-Kamiokande

Japan

295 km

J-PARC

3 GeV

Materials and Life Science Facility

Linac

J-PARC

04.10.17

RECENT RESULTS FROM THE T2K EXPERIMENT
Neutrino oscillations in T2K

- T2K studies neutrino and antineutrino oscillations
 - $\nu_\mu \rightarrow \nu_\mu$, $\nu_\mu \rightarrow \nu_e$
 - $\bar{\nu}_\mu \rightarrow \bar{\nu}_\mu$, $\bar{\nu}_\mu \rightarrow \bar{\nu}_e$

- Appearance channel: θ_{13}, CP violation, θ_{23} octant, mass hierarchy

$$P(\nu_\mu \rightarrow \nu_e) \approx \sin^2 \theta_{23} \sin^2 2\theta_{13} \sin^2 \left(\frac{\Delta m^2_{32} L}{4E_\nu}\right) \left(1 + \frac{2a}{\Delta m^2_{31}}(1 - 2\sin^2 \theta_{13})\right)$$

- For antineutrino oscillations ($P(\bar{\nu}_\mu \rightarrow \bar{\nu}_e)$) δ turns into $-\delta$ and a to $-a$

- Disappearance channel: measure θ_{23} and $|\Delta m^2_{32/1}|$

$$P(\nu_\mu \rightarrow \nu_\mu) \approx 1 - (\cos^2 \theta_{13} \sin^2 2\theta_{23}) \sin^2 \left(\Delta m^2_{32} \frac{L}{4E}\right)$$

$\alpha \equiv 2\sqrt{2} G_F n_e E$

Matter effect
Off-axis beam
- Far detector and complex of near detectors
- Neutrino energy peak at ~0.6 GeV
 \(L = 295 \text{ km, tuned for } 1^{\text{st}} \text{ osc. maximum} \)
- High-purity intense neutrino (antineutrino) beam
 - \(\nu/\bar{\nu} \) beam production by reversing current in magnetic horns
 - Reduced background from intrinsic \(\nu_e \) and high energy tail

\[N_{ND} \approx \Phi_{\nu_D} \times \sigma_{ND} \times \epsilon_{ND} \]
\[N_{FD} \approx \Phi_{\nu_D} \times \sigma_{FD} \times \epsilon_{FD} \times P_{\text{osc}} \]
Near detectors

INGRID:
- On-axis detector
- Iron\scintillator modules
- Beam direction and rate stability monitor
- Day-by-day measurements

ND280:
- Off-axis detector
- Sub-detectors in 0.2 T magnetic field:
 - Fine-Grained detectors (FGD)
 - Time-Projection Chambers (TPC)
- Used to constrain flux and cross-section uncertainty

04.10.17

RECENT RESULTS FROM THE T2K EXPERIMENT
Far detector

- 50 kt water-Cherenkov detector
- 1 km underground
 (~2700 m of water equivalent)
- No magnetic field

- Analysis samples: TOTAL: 5 samples!
 - CCQE – μ – like and e – like events for ν and ν̅ mode
 - CC1π – 1 e-like ring and 1 delayed decay electron
 (~ 10% of events)

Good separation between e and μ events
• Neutrino oscillations
• T2K experiment
• Oscillation analysis
• Recent results
• Future plans
• Summary
Stable operation at ~ 470 kW

Total 22.54 × 10^{20} POT
* POT – Protons On Target

- 14.93 × 10^{20} POT in neutrino mode and 7.62 × 10^{20} POT in antineutrino mode
- Neutrino statistics doubled during 2016-2017 data taking period
T2K analysis strategy

- Hadron production data from NA61/SHINE
- INGRID/Beam monitor data
- ND280 model
- ND280 data
- Flux model
- Cross section model
- Cross-section data from other experiments
- Super-Kamiokande model
- Super-Kamiokande data

Oscillation Fit

- **Oscillation parameters**
 - Frequentist and Bayesian approaches
 - Good agreement between results
• Neutrino oscillations
• T2K experiment
• Oscillation analysis

• Recent results
• Future plans
• Summary
Analysis results: $|\Delta m_{32}^2|$ and θ_{23}

- **2016 analysis:**
 - results comparable with other experiments
 - consistent results in neutrino and antineutrino modes \rightarrow CPT conservation
- **2017 analysis:**
 - pending final systematics
Analysis results: θ_{13}

- T2K results consistent with reactor experiments’ data
 - PDG’16: $\sin^2 \theta_{13} \approx 0.0210 \pm 0.0011$
- T2K data favor normal mass hierarchy
- Result may be used to put constrain on δ_{cp}
Analysis results: CP violation

- Joint analysis with reactor constraint applied
 - *Best fit*: $\delta_{\mathrm{cp}} = -1.833$
 - Normal mass hierarchy preferred
 - CP conservation excluded at the 2σ level
 - δ_{cp} (at 2σ):
 - $[-2.981; -0.600]$ normal mass hierarchy
 - $[-1.531; -1.184]$ inverted mass hierarchy

Reactor constraint $\sin^2 2\theta_{13} = 0.085 \pm 0.005$
• Neutrino oscillations
• T2K experiment
• Oscillation analysis
• Recent results
• **Future plans**
• Summary
Future plans

- Increase $\nu_\mu/\bar{\nu}_\mu$ statistics
 - 7.8×10^{21} POT by ~ 2021
 - T2K II proposal to operate until 2026
- Possibly exclude CP conservation at 3σ level
- Reduction of systematic uncertainties is crucial
 - 18% (2011) → 9% (2014) → 6% (2016) → 4% (2020..)?
- Near detector upgrade
- Improve precision for atmospheric parameters
Summary

- By summer 2017 accumulated 22.54×10^{20} POT
- θ_{13} and θ_{23} measurements are consistent with other experiments’ data
- Excluded CP conservation @2σ level
 - Data favor normal mass hierarchy and the best fit is close to $\delta_{cp} = -\pi/2$

Plans:
- Continue data taking
- T2K II proposal: run until 2026
 - Beam line upgrade to reach power ~ 1MW
 - Near detector upgrade to further improve understanding of neutrino interactions
Backup
T2K Collaboration
~500 members, 63 institutes, 11 countries

<table>
<thead>
<tr>
<th>Country</th>
<th>Institutes</th>
</tr>
</thead>
<tbody>
<tr>
<td>U. Regina</td>
<td></td>
</tr>
<tr>
<td>U. Toronto</td>
<td></td>
</tr>
<tr>
<td>U. Victoria</td>
<td></td>
</tr>
<tr>
<td>U. Winnipeg</td>
<td></td>
</tr>
<tr>
<td>York U.</td>
<td></td>
</tr>
<tr>
<td>France</td>
<td>CEA Saclay, IPN Lyon, LLR E. Poly., LPNHE Paris</td>
</tr>
<tr>
<td>U. Saclay</td>
<td></td>
</tr>
<tr>
<td>IPN Lyon</td>
<td></td>
</tr>
<tr>
<td>LLR E. Poly.</td>
<td></td>
</tr>
<tr>
<td>LPNHE Paris</td>
<td></td>
</tr>
<tr>
<td>Germany</td>
<td>Aachen</td>
</tr>
<tr>
<td>U. Aachen</td>
<td></td>
</tr>
<tr>
<td>U. Bari</td>
<td>INFN, U. Napoli</td>
</tr>
<tr>
<td>INFN, U. Napoli</td>
<td>INFN, U. Padova</td>
</tr>
<tr>
<td>INFN, U. Padova</td>
<td>INFN, U. Roma</td>
</tr>
<tr>
<td>Japan</td>
<td>ICRR Kamioka, ICRR RCCN, Kavli IPMU, KEK, Kobe U., Kyoto U., Miyagi U. Edu., Okayama U., Osaka City U.</td>
</tr>
<tr>
<td>U. Japan</td>
<td>ICRR Kamioka</td>
</tr>
<tr>
<td>ICRR RCCN</td>
<td>ICRR RCCN</td>
</tr>
<tr>
<td>Kavli IPMU</td>
<td>Kavli IPMU</td>
</tr>
<tr>
<td>KEK</td>
<td>KEK</td>
</tr>
<tr>
<td>Kobe U.</td>
<td>Kobe U.</td>
</tr>
<tr>
<td>Kyoto U.</td>
<td>Kyoto U.</td>
</tr>
<tr>
<td>Okayama U.</td>
<td>Okayama U.</td>
</tr>
<tr>
<td>Osaka City U.</td>
<td>Osaka City U.</td>
</tr>
<tr>
<td>U. Poland</td>
<td>IFJ PAN, Cracow</td>
</tr>
<tr>
<td>NCBJ, Warsaw</td>
<td>NCBJ, Warsaw</td>
</tr>
<tr>
<td>U. Silesia, Katowice</td>
<td>U. Silesia, Katowice</td>
</tr>
<tr>
<td>U. Warsaw</td>
<td>U. Warsaw</td>
</tr>
<tr>
<td>Warsaw U. T.</td>
<td>Warsaw U. T.</td>
</tr>
<tr>
<td>Wroclaw U.</td>
<td>Wroclaw U.</td>
</tr>
<tr>
<td>Russia</td>
<td>INR</td>
</tr>
<tr>
<td>U. Russia</td>
<td>INR</td>
</tr>
<tr>
<td>France</td>
<td></td>
</tr>
<tr>
<td>Germany</td>
<td></td>
</tr>
<tr>
<td>U. Germany</td>
<td></td>
</tr>
<tr>
<td>Spain</td>
<td>IFAE, Barcelona</td>
</tr>
<tr>
<td>U. Spain</td>
<td>IFAE, Barcelona</td>
</tr>
<tr>
<td>Spain</td>
<td>IFAE, Barcelona</td>
</tr>
<tr>
<td>IFAE, Barcelona</td>
<td>IFAE, Barcelona</td>
</tr>
<tr>
<td>U. Tokyo</td>
<td>Tokyo Institute of Tech, Tokyo Metropolitan U.</td>
</tr>
<tr>
<td>Tokyo U.</td>
<td>Tokyo Institute of Tech, Tokyo Metropolitan U.</td>
</tr>
<tr>
<td>U. Tokyo</td>
<td>Tokyo Institute of Tech, Tokyo Metropolitan U.</td>
</tr>
<tr>
<td>U. Tokyo</td>
<td>Tokyo Institute of Tech, Tokyo Metropolitan U.</td>
</tr>
<tr>
<td>U. Tokyo</td>
<td>Tokyo Institute of Tech, Tokyo Metropolitan U.</td>
</tr>
<tr>
<td>IFIC, Valencia</td>
<td>IFIC, Valencia</td>
</tr>
<tr>
<td>U. Autonoma Madrid</td>
<td>U. Autonoma Madrid</td>
</tr>
<tr>
<td>U. Autonoma Madrid</td>
<td>U. Autonoma Madrid</td>
</tr>
<tr>
<td>Switzerland</td>
<td>U. Bern, U. Geneva</td>
</tr>
<tr>
<td>U. Switzerland</td>
<td>U. Bern, U. Geneva</td>
</tr>
<tr>
<td>Switzerland</td>
<td>U. Bern, U. Geneva</td>
</tr>
<tr>
<td>United Kingdom</td>
<td>Imperial C. London</td>
</tr>
<tr>
<td>U. United Kingdom</td>
<td>Imperial C. London</td>
</tr>
<tr>
<td>Imperial C. London</td>
<td>Imperial C. London</td>
</tr>
<tr>
<td>Lancaster U.</td>
<td>Lancaster U.</td>
</tr>
<tr>
<td>U. Lancaster</td>
<td>Lancaster U.</td>
</tr>
<tr>
<td>Oxford U.</td>
<td>Oxford U.</td>
</tr>
<tr>
<td>Queen Mary U. L.</td>
<td>Queen Mary U. L.</td>
</tr>
<tr>
<td>Royal Holloway U. L.</td>
<td>Royal Holloway U. L.</td>
</tr>
<tr>
<td>STFC/Daresbury</td>
<td>STFC/Daresbury</td>
</tr>
<tr>
<td>STFC/RAL</td>
<td>STFC/RAL</td>
</tr>
<tr>
<td>Poland</td>
<td></td>
</tr>
<tr>
<td>Russia</td>
<td></td>
</tr>
<tr>
<td>Spain</td>
<td></td>
</tr>
<tr>
<td>U. Poland</td>
<td></td>
</tr>
<tr>
<td>IFIC, Valencia</td>
<td>IFIC, Valencia</td>
</tr>
<tr>
<td>U. Autonoma Madrid</td>
<td>U. Autonoma Madrid</td>
</tr>
<tr>
<td>U. Warwicke</td>
<td>U. Warwick</td>
</tr>
</tbody>
</table>
Recent publications

- First measurement of the ν_μ charged-current cross section without pions in the final state on a water target (arXiv:1708.06771)
- Measurement of neutrino and antineutrino oscillations by the T2K experiment including a new additional sample of ν_e interactions at the far detector (arXiv:1707.0148)
- Measurement of $\bar{\nu}_\mu$ and ν_μ charged current inclusive cross sections and their ratio with the T2K off-axis near detector (Phys.Rev. D96 (2017) no.5, 052001)
- Measurement of the single π^0 production rate in neutral current neutrino interactions on water (arXiv:1704.07467)
- Updated T2K measurements of muon neutrino and antineutrino disappearance using 1.5×10^{21} protons on target (Phys.Rev. D96 (2017) no.1, 011102)
- Search for Lorentz and CPT violation using sidereal time dependence of neutrino flavor transitions over a short baseline (Phys.Rev. D95 (2017) no.11, 111101)
T2K Neutrino flux prediction

- Simulation: FLUKA, GCALOR and GEANT3
- External data: hadron production from NA61/SHINE (CERN)
 - Reduction of uncertainties: ~30% to ~10%
 - Background from ν_e fraction at ~0.5% level
ND280 analysis samples: ν_μ-mode

- CC0π – muon 0 pions in final state
- CC1π – 1 pion and muon in final state
- CC-Other – all other CC interactions
ND280 analysis samples: $\bar{\nu}_\mu$-mode

- CC-1-track and CC-N-tracks samples
ND280 in oscillation analysis

<table>
<thead>
<tr>
<th>Total N_{SK} Fraction Uncertainty, %</th>
<th>ν_μ</th>
<th>ν_e</th>
<th>anti-ν_μ</th>
<th>anti-ν_e</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flux</td>
<td>W/O ND280</td>
<td>7.6</td>
<td>8.9</td>
<td>7.1</td>
</tr>
<tr>
<td>Cross section</td>
<td>W/O ND280</td>
<td>7.7</td>
<td>7.2</td>
<td>9.3</td>
</tr>
<tr>
<td>Flux and cross section</td>
<td>W/ ND280</td>
<td>2.9</td>
<td>4.2</td>
<td>3.4</td>
</tr>
<tr>
<td>Final/sec. hadronic interactions</td>
<td>-</td>
<td>1.5</td>
<td>2.5</td>
<td>2.1</td>
</tr>
<tr>
<td>Far detector</td>
<td>-</td>
<td>3.9</td>
<td>2.4</td>
<td>3.3</td>
</tr>
<tr>
<td>Total</td>
<td>W/O ND280</td>
<td>12.0</td>
<td>11.9</td>
<td>12.5</td>
</tr>
<tr>
<td>Total</td>
<td>W/ ND280</td>
<td>5.0</td>
<td>5.4</td>
<td>5.2</td>
</tr>
</tbody>
</table>

- Fit to ND280 data constrains flux and cross section model
- Significant reduction of systematic uncertainties for oscillation analysis
 - $\approx 12\% \rightarrow \approx 6\%$
Total systematics uncertainties

Systematic uncertainties (%) used in 2017 analysis

<table>
<thead>
<tr>
<th>Error Source</th>
<th>1Rmu FHC</th>
<th>1Rmu RHC</th>
<th>1Re FHC 1 d. e.</th>
<th>FHC/RHC</th>
</tr>
</thead>
<tbody>
<tr>
<td>SK Detector</td>
<td>1.9</td>
<td>1.6</td>
<td>16.5</td>
<td>1.6</td>
</tr>
<tr>
<td>SK FSI+SI+PN</td>
<td>2.2</td>
<td>2.0</td>
<td>11.3</td>
<td>1.6</td>
</tr>
<tr>
<td>SK Detector+FSI+SI+PN</td>
<td>2.9</td>
<td>2.5</td>
<td>19.2</td>
<td>2.1</td>
</tr>
<tr>
<td>ND280 const. flux & xsec</td>
<td>3.3</td>
<td>2.7</td>
<td>4.1</td>
<td>2.5</td>
</tr>
<tr>
<td>$\sigma(\nu_e)/\sigma(\nu_\mu)$, $\sigma(\bar{\nu}e)/\sigma(\bar{\nu}\mu)$</td>
<td>0.0</td>
<td>0.0</td>
<td>2.6</td>
<td>3.1</td>
</tr>
<tr>
<td>NC1γ</td>
<td>0.0</td>
<td>0.0</td>
<td>0.3</td>
<td>1.5</td>
</tr>
<tr>
<td>NC Other</td>
<td>0.3</td>
<td>0.3</td>
<td>1.0</td>
<td>0.2</td>
</tr>
<tr>
<td>Syst. Total</td>
<td>4.4</td>
<td>3.8</td>
<td>19.6</td>
<td>4.7</td>
</tr>
</tbody>
</table>
SK analysis samples

RECENT RESULTS FROM THE T2K EXPERIMENT
New analysis sample in SK: CC1π

- 1 e-like ring and 1 decay electron
- Applied only for ν-mode running
 - Gain ~10% more statistics (MC)
 - 15 events observed
- Five samples available for T2K analysis
Event rates

<table>
<thead>
<tr>
<th>Sample</th>
<th>Predicted Rates</th>
<th>Observed Rates</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$\delta_{cp}=-\pi/2$</td>
<td>$\delta_{cp}=0$</td>
</tr>
<tr>
<td>CCQE 1-Ring e-like FHC</td>
<td>73.5</td>
<td>61.5</td>
</tr>
<tr>
<td>CC1_π 1-Ring e-like FHC</td>
<td>6.92</td>
<td>6.01</td>
</tr>
<tr>
<td>CCQE 1-Ring e-like RHC</td>
<td>7.93</td>
<td>9.04</td>
</tr>
<tr>
<td>CCQE 1-Ring μ-like FHC</td>
<td>267.8</td>
<td>267.4</td>
</tr>
<tr>
<td>CCQE 1-Ring μ-like RHC</td>
<td>63.1</td>
<td>62.9</td>
</tr>
</tbody>
</table>

- Largely in line with the prediction for $\delta_{cp} = -\pi/2$
- More observed e-like $CC1\pi$ events**15** than maximum expectation **6.92**

04.10.17

RECENT RESULTS FROM THE T2K EXPERIMENT

31
Robustness of T2K analysis results

- Neutrino interaction modelling is a rapidly developing media
 - Study potential bias in the T2K oscillation analysis due to the choice of neutrino interaction model and investigate variations that are not yet implemented in the fit model
 - Produce fake data studies by varying parts of the interaction model
 - Fit using the model without the variations
 - Evaluate biases in the fitted oscillation parameters
- Use different data sets:
 - Discrepancies between models and data that may indicate deficiencies in models
 - Planned improvements to models not yet available in oscillation fitting framework
Analysis results: $|\Delta m_{32}^2|$ and θ_{23}

- **Best fit for normal mass hierarchy:**
 - $|\Delta m_{32}^2| \approx 2.462^{+0.081}_{-0.084} \times 10^{-3} \text{ eV}^2/c^4$
 - $\sin^2 \theta_{23} = 0.532^{+0.046}_{-0.068}$

- **Best fit for inverted mass hierarchy:**
 - $|\Delta m_{32}^2| \approx 2.51^{+0.081}_{-0.083} \times 10^{-3} \text{ eV}^2/c^4$
 - $\sin^2 \theta_{23} = 0.534^{+0.043}_{-0.07}$

Posterior Bayesian probability

<table>
<thead>
<tr>
<th></th>
<th>$\sin^2 \theta_{23} < 0.5$</th>
<th>$\sin^2 \theta_{23} > 0.5$</th>
<th>Sum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal mass hierarchy</td>
<td>0.193</td>
<td>0.674</td>
<td>0.868</td>
</tr>
<tr>
<td>Inverse mass hierarchy</td>
<td>0.026</td>
<td>0.106</td>
<td>0.132</td>
</tr>
<tr>
<td>Sum</td>
<td>0.219</td>
<td>0.781</td>
<td>1</td>
</tr>
</tbody>
</table>

Pending final systematics
Fake data studies in T2K

- Use different data sets:
- Data-driven variation generated based on the pre-fit data/prediction discrepancy in ND280 (and external data, e.g. Minerva)
- Variations produced with different assumptions of the axial form factor
- Variations that cover discrepancies in pion spectrum observed in ND280
- Variations to probe new pion production model
Example of ND280 data-driven fake data studies

- Use excess of data over prediction prior to ND280 fitting
- Assign observed access to three different interactions
 - CCQE enhanced
 - 2p2h with intermediate Δ resonate ($2p2h-\Delta$)
 - Pure nucleon-nucleon correlations ($2p2h$-nonΔ)

- Use excess to predict event rates in ND280 and Super-Kamiokande
Example of ND280 data-driven fake data studies

- Example studies for the fake-data studies produced for Asimov data sample

<table>
<thead>
<tr>
<th>Parameter(s)</th>
<th>Asimov A</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\sin^2 \theta_{23}$</td>
<td>0.528</td>
</tr>
<tr>
<td>$\sin^2 \theta_{13}$ reactors</td>
<td>0.0219</td>
</tr>
<tr>
<td>$\sin^2 \theta_{12}$</td>
<td>0.304</td>
</tr>
<tr>
<td>$</td>
<td>\Delta m^2_{32}</td>
</tr>
<tr>
<td>Δm^2_{21}</td>
<td>7.53×10^{-5} eV2/c4</td>
</tr>
<tr>
<td>δ_{CP}</td>
<td>-1.601</td>
</tr>
<tr>
<td>Mass Hierarchy</td>
<td>Normal</td>
</tr>
</tbody>
</table>

- Used in analysis to get sensitivity values
- Values set to PDG-2016 data and best fit values from the previous T2K analysis
Fake data studies

Effect on “atmospheric” parameters

- Bias of Δm^2_{23} to lower values and $\sin^2\theta_{23}$ to max mixing
- Narrow contour obtained for fake data studies
- Studying whether should incorporate these effects of variations as an additional systematic uncertainty
- No conclusive statement yet
Fake data-studies
Effect on δ_{CP}

- Right: Compare nominal MC and the fake data
- Left: shift data $\Delta \chi^2$ according to difference observed in fake data study
- Max change/shift to the confidence interval/mean point: $\approx 2\%$
 - Small effect on δ_{CP} limits
Impact of data samples on δ_{CP}

- Take data samples out 1 at a time and replace with nominal Monte Carlo prediction → check the change on limits
- Largest effect from e-like CC1π sample
ND280 Upgrade

Current ND280 configuration

Reference ND280 configuration

Alternative ND280 configuration

Angle reconstruction efficiency