Neutrino oscillations: status and prospects of accelerator and reactor experiments

> Yury Kudenko Institute for Nuclear Research, Moscow David Wark RAL and Oxford, UK

> > ICPPA17, 4 October 2017, Moscow, Russia,

OUTLINE

- Neutrino oscillations
- Recent oscillation results
 - Accelerators: T2K, NOVA
 - IceCube
 - Reactors: Daya Bay, RENO, Double Chooz
 - Search for CP violation
- □ Future oscillation experiments
 - JUNO
 - DUNE
 - HyperKamiokande
- Light sterile neutrinos
 - current status: pro et contra
 - coming results

v oscillations and mixing

Standard Model: neutrinos are *massless* particles

Main goals of oscillation experiments

Current experiments

about 500 members 59 institutions from 11 countries

Tokyo

LONG-BASELINE NEUTRINO OSCILLATION EXPERIMENT

JAPAN

Super-K

Toyama

Kamioka Mine

JPARC

Tokai

Tokyo/Narita Airport

T2K: appearance

By Summer 2017

Neutrino beam14.7x1020 POTAntineutrino beam7.6x1020 POT

	Predicted events				Observed
Sample	δ _{CP} =- π/2	$\delta_{CP} = 0$	$\delta_{\rm CP} = \pi/2$	$\delta_{\rm CP} = \pi$	events
CCQE 1-Ring e-like v-mode	73.5	61.5	49.9	62.0	74
CC1π 1-Ring e-like <i>v</i> -mode	6.92	6.01	4.87	5.78	15
CCQE 1-Ring e-like $\bar{\nu}$ -mode	7.93	9.04	10.04	8.93	7
CCQE 1-Ring μ -like ν -mode	267.8	267.4	267.7	268.2	240
CCQE 1-Ring μ -like $\bar{\nu}$ -mode	63.1	62.9	63.1	63.1	68

neutrino e-like

neutrino e-like + 1π

antineutrino e-like

T2K: CP

- CP-conservation hypothesis (sin $\delta_{CP} = 0 \text{ or } \pi$) outside 2σ interval -Confidence intervals, rad: [- 2.49 - -1.23] (NH, 1 σ) [-2.98 - -.60] (IH, 2σ) T2K data favour $\delta_{CP} \sim -\pi/2$ and normal hierarchy

T2K: future plan

T2K expected to accumulate 7.8x10²¹ POT around 2021

- Upgrade of near detectors to improve systematic uncertainties 18% (2011) → 9% (2014) → 6% (2016) → goal 4% (2020)
- Plan to increase the beam intensity up to 1 MW in 2021
- Beam power up to 1.3 MW in ~2026
- T2K-II: proposed extension up to 2026 for $20x10^{21}$ POT 3σ sensitivity to CP violation for $\delta_{CP} \sim -\pi/2$

NOVA

NOvA results

PRL 118 (2017)151802

ν_{μ} disappearance

473 ±30 events expected w/o oscillations 78 events observed

Neutrino mode 6.05x10⁵ POT

IceCube

J.Hignight, talk at CoSSURF 2017

Neutrinos have the first maximum of disappearance at about 25 GeV

Reactor experiments

θ_{13} from reactors

• nGd 1230 days

• 217 days of full 6-AD data set

Daya Bay

- 1013 days of 8-AD data sample
- Improved energy response model and energy calibration
- Reduced uncertainties in background events

 $sin2\theta_{13} = 0.085 \pm 0.05$ $\theta_{13} = 8.4 deg$

Future LBL Projects

- Reactor experiment JUNO

- Accelerator LBL experiment DUNE
- HyperKamiokande and T2HK

Reactor experiment JUNO China

66 institutions > 500 collaborators

Measurement of neutrino mass hierarchy

- 700 m deep underground
- 36 GW reactor power
- 53 km baseline -> oscillation

maximum θ_{12}

- 20 kton LS detector
- **3%** energy resolution at 1MeV
 - <1% energy scale uncertainty</p>

JUNO targets

Main goal: determination of neutrino mass hierarchy

÷

PRD 88, 013008 (2013)	Hierarchy discrimination power		With info on Δm ² _{μμ} from LBL expts	
Statistics only	4σ		5σ	
Realistic case	3σ		4σ	
Oscillation Parameter	Current accuracy (global 1σ) ^{**}	Dominant experiment(s)		JUNO Potentiality
Δm^2_{21}	2.3%	KamLAND		0.59%
$\Delta m^2 = m_3^2 - rac{1}{2} \left(m_1^2 + m_2^2 ight) $	1.6%	MINOS, T2K		0.44%
$\sin^2(\theta_{12})$	~4-6%	SNO		0.67%

Supernova neutrino Geoneutrinos Solar neutrinos

LBNF/DUNE Project

Groundbreaking ceremony at SURF - July 2017

Flagship FNAL project

Main goals: - discovery of CP violation in leptonic sector

- neutrino mass hierarchy at $>5\sigma$ level
- neutrino astronomy
- proton decay search

161 institutions ≥1000 collaborators $E_{p} = 60-120 \text{ GeV}$ Beam power 1.2 -> 2.4 MW On axis neutrino beam

30 countries

 $E_V \sim 1-6 \text{ GeV}$ L=1300 km from FNAL to SURF, S.Dakota

Sensitivity to CP violation

CP Violation Sensitivity

2021 – installation of 1st far detector 2024 – 2 modules operational 2026 – deliver neutrino beam

Far detector 40 kt (4 x 10kt) LAr TPC

Single and Dual phase detectors

Single-phase LAr TPC

1st 10 kt module of DUNE - single-phase TPC
6m x 2.3 m anode and cathode planes 3.6 m spacing
Photon detectors – light guides + SiPMs embedded in APAs

LAr detectors at CERN Neutrino Platform

NP02: WA105 (DP demonstrator + ProtoDUNE DP)

S.Murthy, talk at TPC-2016

Demonstrator: $3x1x1 \text{ m}^3 - 5 \text{ tons}$

ProtoDUNE DP: 6x6x6 m³ 300 tons active mass

Measurements with test beam in 2018

Cosmic data taking

Expected sensitivity to CP

Significance for $\delta_{CP} = -\pi/2$

Second tank in Korea

arXiv:1611.06118

Sterile neutrinos

LSND

MiniBooNe

$v_{\mu} \rightarrow v_{e}$ anti- $v_{\mu} \rightarrow$ anti- v_{e} $L \approx 540 \text{ m}$ Ev = 0.2-3 GeV

Gallium anomaly

427 keV v (9.0%) 432 keV v (0.9%) 320 keV γ ⁵¹ V (stable) Detection pro	⁵¹ Cr (27.7 days) 7 keV v (81.6%) 2 keV v (8.5%) CESS: ν _e)) + ⁷¹ Ga →	³⁷ Ar (813 811 ⁵¹ Ge + e ⁻	(35.4 days) keV v (9.8%) keV v (90.2%)	
	GALLEX		SAGE m(Ca)=13 t		
Source	⁵¹ Cr -1	⁵¹ Cr -2	⁵¹ Cr	³⁷ Ar	
Intensity (Mci)	1.714	1.868	0.517	0.409	
$\mathbf{R} = (p_{exp}/p_{theory})$	$\boldsymbol{0.95\pm0.11}$	0.81 ± 0.11	0.95 ± 0.12	0.79 ± 0.10	
R _{comb}	0.88	± 0.08	0.86 ± 0.08		
1.1 GALLEX 1 0.9 0.8 0.8 0.7 0.7	Cr1 S GALLEX Cr2	SAGE Cr SAGE A	Ar		

Reactor anomaly

anti- $v_e \rightarrow anti-v_e$

Sterile neutrino?

$$\Delta m_{14}^2 \sim 1 \, eV^2$$

PNMS matrix

$$\begin{bmatrix} v_{e} \\ v_{\mu} \\ v_{\tau} \\ v_{s} \end{bmatrix} = \begin{bmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \end{bmatrix} \begin{bmatrix} v_{1} \\ v_{\mu 4} \\ U_{\tau 4} \\ U_{\tau 4} \end{bmatrix} = \begin{bmatrix} v_{1} \\ v_{2} \\ v_{3} \\ v_{4} \end{bmatrix}$$

$$|U_{e4}|^2 = \sin^2 \theta_{14}$$

$$|U_{\mu4}|^2 = \sin^2 \theta_{24} \cdot \cos^2 \theta_{14}$$

$$|U_{\tau4}|^2 = \sin^2 \theta_{34} \cdot \cos^2 \theta_{24} \cdot \cos^2 \theta_{14}$$

v_e and anti- v_e disappearance

Global fit of reactor and Gallium data

arXiv:1512.02202

Hunting for sterile neutrinos

Accelerator MINOS SBN at FNAL Reactor (running or under construction) Daya Bay, RENO, Double Chooz DANSS **Neutrino-4 NEOS STEREO** Solid PROSPECT NuLat **Neutrino sources** BEST SOX **Atmospheric neutrinos SuperKamiokande IceCube**

Sterile v's: Daya Bay + MINOS + Bugey-3

Sterile v's: IceCube

PRL 117 (2016) 071801

Ev = 320 GeV - 20 TeV

sterile neutrinos produce distortions of $\nu\mu$ + anti- $\nu\mu$ flux (energy and angle) in the range $0.01 \le \Delta m^2 \le 10 \text{ eV}^2$

1 year of data statistics limited

Result compatible with no-sterile hypothesis

NEOS: reactor anti-v disappearance

PRL 118 (2017) 121802

Korea, Reactor 2.8 GW Core: \emptyset 3.1 m h=3.8 m Detector 1t LS + Gd, 24 m from reactor core S/N ~ 22

No evidence for sterile neutrino with mass ~ 1 eV

DANSS and Neutrino-4

M.Danilov, talk at 52 Moriond EW 2017

R. Samoilov, talk at ICPPA 2017

Source experiments

BEST

3 MCi ⁵¹Cr source

Two-zone 50 t liquid Ga metal target

J.Phys.Conf.Ser. 798 (2017) 012113

SOX

Ultra-low radioactive background

• Spatial resolution: 12 cm @ 2 MeV

Energy resolution: ~3,5% @ 2 MeV

¹⁴⁴Ce-¹⁴⁴Pr v_e source (100-150 kCi)

Source will be produced at Mayak, Russia

Start data taking in 2018

PRD 91 (2015) 072005

FNAL: SBN

Short baseline experiments: three LAr detectors

Detector	Distance from BNB Target	LAr Total Mass	LAr Active Mass
LAr1-ND	110 m	220 t	112 t
MicroBooNE	470 m	170 t	89 t
ICARUS-T600	600 m	760 t	476 t

Data taking to start in 2020

Sterile v's: «+» and «-»

+

LSND/MinBooNe Reactor anomaly + Daya Bay RENO flux measurements Ga anomaly

- <

MINOS Disappearence MINOS/Daya Bay/Bugey combined result IceCube NEOS, DANSS, Neutrino-4

More results from accelerator, reactor, source experiments coming soon

Conclusion

Current LBL experiments T2K + NOvA main goals: CP violation (3σ), Mass Hierarchy, θ_{23}

Next generation experiments:discovery/measurement of CPvioaltion, determination of Mass HierarchyJUNO(MH)under constructionDUNE(CP, MH)approvedHyperK and T2HK(CP)included in roadmap

Light sterile neutrinos: crucial tests in experiments with neutrinos from accelerators, reactors, atmosphere and neutrino sources in progress

Thank you!