
Machine	Learning	at	
LHCb
Mikhail	Hushchyn

National	Research	University	Higher	School	of	Economics
Moscow	Institute	of	Physics	and	Technology

Yandex School	of	Data	Analysis

on	behalf	of	the	LHCb collaboration	

ICPPA	2017,	3-6	October,	Moscow



The	LHCb Detector
• LHCb is	a	single-arm	forward		spectrometer.
• The	main	goal	of	the	detector	is	to	search	for	indirect	evidence	of	new	
physics	in	CP	violation	and	rare	decays	of	beauty	and	charm	hadrons.
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Why	do	we	use	ML?

40 MHz bunch crossing rate

450 kHz
h±

400 kHz
µ/µµ

150 kHz
e/γ

L0 Hardware Trigger : 1 MHz 
readout, high ET/PT signatures

Software High Level Trigger

12.5 kHz (0.6 GB/s) to storage

Partial event reconstruction, select 
displaced tracks/vertices and dimuons

Buffer events to disk, perform online 
detector calibration and alignment

Full offline-like event selection, mixture 
of inclusive and exclusive triggers

LHCb 2015 Trigger Diagram

The	LHCb detector	generates	too	
much	data	to	keep	it	all.	Machine	
learning	is	needed	for	efficient	
selection	of	the	most	interesting	
events	in	Software	High	Level	Trigger.

ML	is	also	used	in:
• Track	pattern	recognition
• Fake	tracks	rejection	
• Particle	identification
• Jets	identification
• DQ	monitoring
• Optimize	use	of	storage	capacity	



Track	Pattern	Recognition
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Upstream track
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• VELO	tracking:	vertex	reconstruction
• Long	tracks:	used	in	majority	of	analyses	(B/D	decays)
• Downstream	tracks:	daughters	of	long	lived	particles
• Average	tracking	efficiency	>	96%
• Momentum	resolution	varies	from	0.5%	at	low	momentum	to	1.0%	at	

200	GeV
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Long	Tracks	Reconstruction

Starting	from	seeds	in	the	VELO,	tracks	are	searched	in	T	stations:
• Search	window	in	T	stations	defined	by	VELO	track.
• Project	x-hit	into	reference	plane.	
• Fit	4-layer-x-cluster and	remove	outliers.
• Add	and	fit	track	with	stereo	hits.

Two	Deep	Neural	Networks:	
• First	of	them	is	tuned	for	rejection	of	bad	4-layer-x-clusters.	
• Second	one	is	trained	for	candidates	selection	after	stereo	fit.	

LHCb-PROC-2017-013

5



Downstream	Tracks	Reconstruction

The	algorithm	is	seeded	by	tracks	
reconstructed	in	T	stations.	

Find	matching	TT	hits	

Results:	3	- 5%	improvement	
in	fake	track	rejection	and	
increase	in	signal	efficiency

Rejection	of	about	40%	of	fake	T-Seeds	
using	Bosai	BDT	[JINST 8 P02013]

VELO track Downstream track

Long track

Upstream track

T track

VELO
TT

T1 T2 T3
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TMVA	MLP



Fake	Track	Rejection
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NNs	are	trained	for	background	rejection	at	given	(97	to	99	%)	efficiency.
Fake	track	(ghost)	probability	based	on	the	DNN	output	allows	to	reduce	
fake	rate. Results:
• Increased	efficiency
• Reduced	fake	rate	(22%	→ 14%)
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Using	DNNs
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Particle	Identification
• Problem:	identify	particle	type	associated	with	a	track.
• Particle	types:	Ghost,	Electron,	Muon,	Pion,	Kaon,	Proton.	
• LHCb subdetectors:	RICH,	ECAL,	HCAL,	Muon	Chambers	and	Track	

observables	
• Different	particle	types	has	different	responses	in	the	subdetectors.		
• The	problem	can	be	considered	as	multiclass	classification	problem	in	

machine	learning.	

LHCb RICH
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Particle	Identification
• The	first	machine	learning	algorithms	used	for	the	PID	in	LHCb is	one-

hidden-layer	neural	network	(TMVA	MLP).
• Each	particle	type	has	its	own	binary	NN	trained	in	one-particle-vs-

rest	mode.

Σ# → 𝑝𝜇#𝜇& Σ# → 𝑝𝜇#𝜇&
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Plots:	using	data	sidebands	 for	backgrounds	and	Monte	
Carlo	simulation	 for	the	signal



Particle	Identification

• One	model	for	all	particle	
types.

• ROC	AUCs	≈ 0.91 − 0.99 for	
different	particle	types.

6xProbNNs	trained	in	one-vs-rest	
mode	are	considered	as	baseline.

Further	PID	performance	improvement	is	done	using	different	multiclass	
models:	deep	neural	networks	(DNN)	and	BDTs	(XGBoost and	CatBoost):
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LHCb Simulation,	preliminary



Particle	Identification
Several	DBT	models	with	flat	efficiencies	along	𝑷, 𝑷𝒕, 𝜼 and	𝒏𝑻𝒓𝒂𝒄𝒌𝒔
are	provided.	The	models	are	trained	with	special	loss	function	
described	in	[JINST	10	(2015)	T03002].

LHCb Simulation,		preliminary
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𝝅𝟎 − 𝜸 separation
Signal:	single	photon	𝛾.
Background:	photons	from	𝜋= → 𝛾𝛾 decay.
Problem: separate	signal	and	background	clusters	in	the	
electromagnetic	calorimeter.
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𝝅𝟎 − 𝜸 separation
Baseline	solution:
• Clusters	shape	and	symetry	are	described	by	set	of	features.	
• 2-layers	MLP	is	trained	to	separate	signal	and	background	clusters.

𝐵= → 𝐾∗=𝛾

MLP	response	>	0.6
𝜀BCD~98%,𝜀HID~55%

LHCb-PUB-2015-016	
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𝝅𝟎 − 𝜸 separation
New	approach:
• Responses	in	5x5	cell	clusters	for	ECAL	and	pre-shower	detectors	are	

considered	as	new	features.
• Several	NN	and	BDT	models	are	trained	on	these	2x25	input	features.
• BDT	model	shows	better	performance.
• Promising	possibility	of	aggressive	background	suppression	is	

demonstrated	on	simulated	data.
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Jet	Tagging
Problem:	identify	b	and	c	jets	with	a	small	misidentification	probability	
of	light-parton jets.	The	identification	of	(b,	c)	jets	is	performed	using	
SVs	from	the	decays	of	(b,	c)	hadrons.	

LHCb-PAPER-2015-016
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Jet	Tagging
Two	BDT	models	are	considered:	DBT(𝑏𝑐|𝑢𝑑𝑠𝑔)	is	trained	to	separate		
𝑏𝑐 and	𝑙𝑖𝑔ℎ𝑡 jets,	BDT(𝑏|𝑐)	is	trained	to	separate	𝑏 and	𝑐 jets.	Both	BDTs	
are	trained	on	simulated	samples	of	b,	c	and	light-parton jets.	10	
kinematic	observables	of	SVs	are	used	as	inputs.

LHCb-PAPER-2015-016

W+jet events
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Jet	Tagging

The	(b,	c)-jet	efficiencies	versus	the	mistag probability	of	light-parton
jets	obtained	by	increasing	the	DBT(𝑏𝑐|𝑢𝑑𝑠𝑔)	cut.

LHCb-PAPER-2015-016
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Topological	Trigger
• The	goal	of	HLT2	topological	trigger	is	efficient	selection	of	any	B	(and	

D)	decay	with	at	least	2	charged	daughters.	
• It	is	designed	to	handle	the	possible	omission	of	child	particles.	
• In	Run	1,	a	simple	BDT	was	used	to	define	interesting	SVs.
• In	Run	2,	the	algorithm	is	reoptimized using	several	ML	models.		

LHCb-PUB-2011-016
J.	Phys.:	Conf.	Ser.	664	(2015)	082025
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Topological	Trigger
HLT-1	track	is	looking	for	one	super	high	PT	or	high	displaced	track.
HLT-1	track	MVA	classifier	is	looking	for	two	tracks	making	a	vertex.	
HLT-2	topological	classifier	uses	full	reconstructed	event	to	look	for	2,	3,	
4	and	more	tracks	making	a	vertex.
Kinematic	observables	of	SVs	are	used	as	the	classifiers	inputs.

19
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HLT-1	track:	90	kHZ HLT-1	track	MVA:	40	kHZ



Topological	Trigger
• Several	ML	models	are	considered	during	the	trigger	reoptimization:	

BDTs	(MatrixNet),	Neural	Networks,	Logistic	Regression.
• ROC	curve	in	a	region	with	small	False	Positive	Rate	is	optimized.
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LHCb Simulation,	
preliminary

LHCb Simulation,	
preliminary



Topological	Trigger
• Most	n-body	hadronic	B	decays	(n	≥	3)	are	only	triggered	on	

efficiently	in	LHCb by	the	topological	trigger.
• Gain	50%..80%	efficiency	for	different	channels.	
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𝜀VWX(𝑅𝑢𝑛	2)/𝜀VWX(𝑅𝑢𝑛	1)



Jet	Tagging	&	TOPO	Trigger
• The	topological	trigger	algorithm	uses	SVs	that	satisfy	similar	criteria	

to	those	used	in	the	SV-tagger	algorithm	to	build	two-,	three- and	
four-track	SVs.	

• The	SV	used	by	the	TOPO	to	trigger	recording	of	the	event	can	also	be	
used	to	tag	a	b	jet.

• The	BDT	used	in	the	TOPO	algorithm	uses	similar	inputs	as	jet-tagger	
BDT	models.	

The	“loose”	label	for	the	TOPO	refers	to	the	BDT	requirement	used	in	the	trigger	 for	SVs	that	
contain	muon	candidates.	
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DQ	Monitoring	Robo-Shifter

• Robo-shifter	is	machine-
learning	based	system	
designed	to	assists	the	DQ	
shifter.

• Given	run	data	it	can	predict	
probability	of	run	being	good	
or	bad.

• Provides	potential	problem	
sources	extracted	from	
decision	trees.

• The	first	version	of	robo-
shifter	is	currently	being	tested	
by	the	DQ	shifters.
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Machine	learning	is	everywhere	at	LHCb helping	to	improve	the	
detector	operation	and	data	processing.
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