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The LHCb Detector

 LHCb is a single-arm forward spectrometer.
* The main goal of the detector is to search for indirect evidence of new
physicsin CP violation and rare decays of beauty and charm hadrons.
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Why do we use ML?

LHCb 2015 Trigger Diagram

The LHCb detector generates too

much data to keep it all. Machine

learning is needed for efficient LO Hardware Trigger : 1 MHz
: : : t, high Er/Pr signat
selection of the most interesting readout, high Er/Pr signatures
: : : 450 kHz 400 kHz 150 kHz
events in Software High Level Trigger. ht 0/ e/y

ML is also used in: :

* Track pattern recognition ( Partial event reconstruction, select J
. . displaced tracks/vertices and dimuons

* Fake tracks rejection _

* Pa rtiCIe identiﬁcation ( Buffer events to disk, perform online

e Jetsidentification :

* DQ monitoring (

* Optimize use of storage capacity

detector calibration and alignment

of inclusive and exclusive triggers
12.5 kHz (0.6 GB/s) to storage

3

Full offline-like event selection, mixture]




Track Pattern Recognition

* VELO tracking: vertex reconstruction

* Long tracks: used in majority of analyses (B/D decays)
 Downstream tracks: daughters of longlived particles
* Average tracking efficiency > 96%

e Momentum resolutionvaries from 0.5% at low momentum to 1.0% at
200 GeV
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Long Tracks Reconstruction
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Starting from seeds in the VELO, tracks are searched in T stations:
e Search window in T stations defined by VELO track.
* Project x-hit intoreference plane.
* Fit 4-layer-x-cluster and remove outliers.
* Add and fit track with stereo hits.

LHCb-PROC-2017-013
Two Deep Neural Networks:
* First of them is tuned for rejection of bad 4-layer-x-clusters.
 Secondoneistrained for candidates selection after stereo fit.



Downstream Tracks Reconstruction

Get all T-seeds
from TES

Upstream track
T1 T2 T3

The algorithm is seeded by tracks
reconstructed in T stations. -

VELO C—Tong track |
I
VELO track Downstream track
No »{ Next Event \/
\/) T track

Rejection of about 40% of fake T-Seeds
using Bosai BDT [JINST 8 P02013]
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Results: 3 - 5% improvement
in fake track rejection and

track candidate Set of downstream
or reject all of tracks candidates . . . . .
fhem percachsee) increase in signal efficiency




Fake Track Rejection

NNs are trained for background rejection at given (97 to 99 %) efficiency.
Fake track (ghost) probability based on the DNN output allows to reduce
fake rate. Results:

* Increased efficiency

 Reduced fake rate (22% — 14%)

LHCb-PROC-2017-013
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Particle Identification

Problem:identify particle type associated with a track.

Particle types: Ghost, Electron, Muon, Pion, Kaon, Proton.

LHCb subdetectors: RICH, ECAL, HCAL, Muon Chambers and Track
observables

Different particle types has different responses in the subdetectors.
The problem can be considered as multiclass classification problemin
machine learning.
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Particle Identification

* The first machine learning algorithms used for the PID in LHCb is one-
hidden-layerneural network (TMVA MLP).
* Each particle type has its own binary NN trained in one-particle-vs-

rest mode.
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Plots: using data sidebands for backgrounds and Monte

Carlo simulation for the signal



Particle Identification

Further PID performance improvementis done using different multiclass
models: deep neural networks (DNN) and BDTs (XGBoost and CatBoost):

* One modelfor all particle |

Muon ST W =W
Chambers £ <\\\\'ll///’; KA, <\\\\\'ll///’; )
types- ‘ \\\I\\":z‘,ﬁy I\\‘VV/{//( VY Ghost

\WAW2(
N 1
A ‘\‘I

YA

]
Ui

)
* ROCAUCs = 0.91 — 0.99 for O

RICH
different particle types. K
ECAL & T
- - HCAL Vi H )
6xXProbNNs trained in one-vs-rest I,,I,.‘\Iv.ilqu Y@ P
R
mode are considered as baseline. Tracking @SR //‘"&‘I\\‘?/’ e
System //\\ ‘ \ //\\ /

LHCb Simulation, preliminary (1-AUC)/(1-AUChaseline)

Ghost Electron Muon Pion Kaon Proton
baseline I I I I I I
deep NN -29 % 41 % -52 % -37 % -20 % -17 %
XGBoost -24 % -37 % -50 % -34 % -18 % -15%
CatBoost -30 % -43 % -54 % -37 % -20 % -18 %




Particle Identification

Several DBT models with flat efficienciesalong P, Pt,n and nTracks
are provided. The models are trained with special loss function
described in [JINST 10 (2015) T03002].
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0 .
T- — Y separation
Signal: single photony.
Background: photonsfrom ° — yy decay.

Problem: separate signal and background clustersin the
electromagnetic calorimeter.
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¥ — y separation

Baseline solution:
e Clustersshape and symetry are described by set of features.
e 2-layers MLP is trained to separate signal and background clusters.

LHCb-PUB-2015-016
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¥ — y separation

New approach:

Responses in 5x5 cell clusters for ECAL and pre-shower detectors are
considered as new features.
Several NN and BDT models are trained on these 2x25 input features.

BDT model shows better performance.
Promising possibility of aggressive background suppression is

demonstrated on simulated data.
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Jet Tagging

Problem:identify b and c jets with a small misidentification probability
of light-parton jets. The identification of (b, c) jets is performed using

SVs from the decays of (b, c) hadrons.
LHCb-PAPER-2015-016
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kinematic observables of SVs are used as inputs.

3 1_' R | HERES PR
S | b-jets -
= I -« smEEEE -
2 05t e ammmE.
i seEEEEN
i s EEEENESs
i s EEEEESs
o e e
03 Wijet events .
- LHCb simulation ]
UM YR TN T NN YRR S TN N NN TN AN ST SO N W "
05 "0 05 1
BDT(bcludsg)

Jet Tagging

Two BDT models are considered: DBT(bc|udsg) is trained to separate
bc and light jets, BDT(b|c) is trained to separate b and c jets. Both BDTs
are trained on simulated samples of b, c and light-parton jets. 10
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Jet Tagging

LHCb-PAPER-2015-016
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Topological Trigger

 The goal of HLT2 topological trigger is efficient selection of any B (and
D) decay with at least 2 charged daughters.

* |tis designed to handle the possible omission of child particles.

* InRun 1, asimple BDT was used to define interesting SVs.

* InRun 2, the algorithm is reoptimized using several ML models.

J. Phys.: Conf. Ser. 664 (2015) 082025
LHCb-PUB-2011-016
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Topological Trigger

HLT-1 track is lookingfor one super high PT or high displaced track.
HLT-1 track MVA classifier is looking for two tracks making a vertex.
HLT-2 topological classifier uses full reconstructed event to look for 2, 3,
4 and more tracks making a vertex.

Kinematic observables of SVs are used as the classifiers inputs.

HLT-1 track: 90 kHZ HLT-1 track MVA: 40 kHZ

N

J. Phys.: Conf. Ser. 664 (2015) 082025 OR

HLT-2 Topo: 2-4 kHZ [

e

4:/ \6
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TPR, signal events efficiency
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Topological Trigger

e Several ML modelsare considered during the trigger reoptimization:
BDTs (MatrixNet), Neural Networks, Logistic Regression.
ROC curve in a region with small False Positive Rate is optimized.

ROC for events

o
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LHCb Simu!ation,
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FPR, background events efficiency

J. Phys.: Conf. Ser. 664 (2015) 082025
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Topological Trigger

* Most n-body hadronic B decays (n = 3) are only triggered on
efficiently in LHCb by the topological trigger.
* @Gain 50%..80% efficiency for different channels.

J. Phys.: Conf. Ser. 664 (2015) 082025

egrr(Run 2) /ey r(Run 1)

mode 4. kHz
BY - K¥[KTrn\utp™ 1.72
Bt - nTK KT 1.65
BY = DI [K+tK—n|uty, 1.47
BY — (18T | KTK ntn~ 1.71
BY) - D7 [KTK n|n™ 1.52

B - DY[K—ntat|D-[Ktr 7] 1.86
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Jet Tagging & TOPO Trigger

 The topological trigger algorithm uses SVs that satisfy similar criteria

to those used in the SV-tagger algorithm to build two-, three- and
four-track SVs.

 The SV used by the TOPO to trigger recording of the event can also be

used totagab jet.

e The BDT used in the TOPO algorithm uses similar inputs as jet-tagger

efficiency

BDT models.
LHCb-PAPER-2015-016
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The “loose” label for the TOPO refers to the BDT requirement used in the trigger for SVs that

contain muon candidates.
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DQ Monitoring Robo-Shifter

Robo-shifteris machine-
learning based system
designed to assists the DQ
shifter.

Given run data it can predict
probability of run being good
or bad.

Provides potential problem
sources extracted from
decision trees.

The first version of robo-
shifter is currently being tested
by the DQ shifters.

+ 183156 G

A Robo-shifter =5

Robo-shifter

The prediction for this run is 0.47

Please judge by distribution of predictions:

18

@ Bad runs
16 @ Good runs

Ty

12}

10+

03 05
Prediction

Suspicious histograms:

+ /OfflineDataQuality/ALIGNMENT: page 06: IT overlap residuals: histogram
IT1TopBox dx

o /OfflineDataQuality/TESLA-BRUNEL: page 01: Tesla Brunel monitor:
histogram TeslaBrunelMonitor

« /OfflineDataQuality/CALO: page 1: Photon and Electrons Reconstruction:
histogram (gg) mass Rec/Calo/Photons

o /OfflineDataQuality/TESLA-BRUNEL: page 01: Tesla Brunel monitor:
histogram TeslaBrunelMonitor

« /OfflineDataQuality/RICH: page 8: PID Monitoring with J-Psi: histogram
Mass of J/psi(1S)_all

¢ /OfflineDataQuality/ALIGNMENT: page 04: RICH HPD Panel Alignment:
histogram dTheta v phi CSide-right
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Machine learning is everywhere at LHCb helpingto improve the
detector operation and data processing.



