COMMISSIONING OF THE FIRST CHAMBERS OF THE CMS GE1/1 MUON STATION

Martina Ressegotti (INFN Pavia & University of Pavia, Italy) on behalf of the CMS Muon Group

ICPPA2017 - The 3rd International Conference on Particle Physics and Astrophysics

> National Research Nuclear University "MEPhl" Moscow, Russia

> > 2-5 October 2017

Outline

Introduction

- The CMS Muon System
- The GEM Technology
- The LHC Future Upgrades

The GE1/1 station and the Slice Test

- The GE1/1 station
- Motivation for the GE1/1 station
- The GE1/1 Slice Test

Commissioning

- The HV system
- The Readout and LV system
- System Calibration
- Detector Performance

The CMS Muon System

Several detection technologies are employed:

- Drift Tubes (DTs) in the barrel and Cathode Strip Shambers (CSCs) in the endcaps (covering 1.0 < |η| < 2.4) → precision position measurements and trigger
- **Resistive Plate Chambers (RPCs)** up to $|\eta| < 1.8$ in both barrel and endcaps \rightarrow Redundant trigger and coarse position measurement

 Installation of triple GEM detectors in the region
 1.6<|η|<2.2 is scheduled in 2019-2020

The GEM Technology

DESIGN

- A GEM (Gas Electron Multiplier) foil is a 50 μm thick polymer foil coated with 5 μm copper on each side
- Regular (triangular) pattern of holes
- Biconical holes with maximum diameter of 70 μm, interspace
 140 μm
- A triple-GEM is a stack of three GEM foils

OPERATION

- Potential difference applied on copper sides either through a divider or through independent HV channels
- Electric field between foils → drift of electrons towards the underlying foil
- High electric field inside holes

 → avalanche multiplication of
 electrons entering the holes
- Signal collected with appropriate electronics

The LHC Future Upgrades

The LHC Upgrades

- The Large Hadron Collider (LHC) has scheduled some upgrades, starting in 2019 and 2024 resp., in order to gradually increase the delivered luminosity.
- In the final configuration a luminosity of about $5 \times 10^{34} \ cm^{-2} s^{-1}$ is expected

Consequences on CMS muon system

• The background rate in the $1.6 < |\eta| < 2.2$ region is expected to be $\sim 1000 \ Hz/cm^2$ after the Upgrades, so that achieving an acceptable L1 trigger rate for muons with $p_T < 25 \ GeV$ will not be possible without increasing the threshold on muon p_T .

Background rate expected in the GE1/1 region.

The GE1/1 station

 Composed of 36 chambers («Gemini») per endcap, spanning 10° each

 Each chamber is made of two stacked triple-GEM detectors (*«Layers»*)

• The rate capability of the chambers is orders of magnitude above the expected background rate in that region

Motivation for the GE1/1 station

In view of the high luminosity:

GE1/1 will allow to keep <5 kHz trigger rate without increasing threshold on muon's momentum

- $\Delta \varphi_{strip} = 463 \ \mu rad$
- Will be added in front of CSCs to measure the muon bending angle in magnetic field
- Adds redundancy
- Will work combined with CSCs

Above: Level-1 muon trigger rates before and after the GE1/1 upgrade at a luminosity of 2×10^{34} cm⁻²s⁻¹, for constant efficiency of 94%.

Left: Measurement of the bending angle from CSC and GEM combined. 7

The GE1/1 Slice Test

- Five Gemini chambers (50° in total) have already been installed at the beginning of 2017
- The goals are to prove the system's operational conditions and to demonstrate the integration into the CMS online system

The GE1/1 Slice Test

e 3rd International Conference on Particle Physics and Astrophysics

The HV system

High Voltage Supply

- 4 Gemini chambers are supplied with a CAEN A1526N: a ceramic divider distributes the voltage to each detector's stage
 → 1 HV channel per layer
- 1 Gemini chamber is supplied with a CAEN A1515TG ^(*) module: each detector's stage can be powered independently from each other

 \rightarrow 7 HV channels per layer

(*) to be used with production chambers.

The Readout and LV system

- The readout system is based on VFAT2 ^(*) chip and OHV2b
 - Optical fibers for data flow and control (8 fibers per layer)
- The LV power system requires <u>3 LV channels per</u> layer:

1 to power the VFAT
(approx. 3.3 V)
2 to power optohybrids
(approx. 4V and 1.7 V)

(*) VFAT₃ will be used in the production chambers.

10/4/2017

CMS

LV stability - VFATs

 Two different ranges: running mode → the current increases up to about 6.5 A sleep mode → the current is around 2 A.

• Values overall stable during a 10 days period

System Calibration

Threshold scans	\rightarrow	Scan the noise of the channels as function of applied threshold.
S-curves	→	Scan the response of the channels to an injected pulse calibrated to a given charge at a given threshold. It indicates at which amplitude of the calibration pulse a signal becomes visible, i.e. a conversion between the threshold and the charge, to evaluate the equivalent noise charge of the system.
Latency scans	\rightarrow	Scan the ratio of events with detected hits over the total number of events, per different latency values. *The latency is the time difference between the time of arrival of a L1Accept (L1A) and the time at which the related event was stored.

The channels display a dispersion of the 50% of hit-per-pulse ratio \rightarrow the effective threshold is not constant across the chips.

The threshold value is adjustable channel by channel using programmable registers After trimming the channels display a reduced dispersion of the 50% of hit-per-pulse ratio around the average one. 16

200

350

300

Chamber strip

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

Detector Performance

Delay between seen S-bit and received L1A for cosmic ray muon data (Expected delay = 175 BX)

Integrated over all VFAT positions

10/4/2017

Summary

- The installation of GE1/1 chambers based on GEM technology has been scheduled in order to allow maintaining an acceptable trigger rate after the LHC upgrades.
- A Slice Test composed of 5 Gemini chambers has been installed at beginning of 2017 and is under commissioning:
 - HV and LV systems: functional and stable.
 - DAQ system: work is progressing, not yet functionally used
 - Electronics: functional and successfully calibrated.
 - Operation: successfully detected cosmic ray muons and muons from pp collisions.
 - Other aspects not covered here: gas system, cooling system, cable routing and other necessary services have been installed/performed and working properly.
- Production of GE1/1 chambers is in a full swing.

Backup

VFAT₂

Main features:

- A 128 channel chip for charge sensitive readout of multichannel silicon & gas particle detectors
- Trigger: Provide intelligent "FAST OR" information for the creation of a trigger.
- Tracking: Binary "hit" information for each of the 128 channels
- 40MHz signal sampling (dead time free)

Reference:

"VFAT2: A front-end system on chip providing fast trigger information, digitized data storage and formatting for the charge sensitive readout of multi-channel silicon and gas particle detectors", Proceedings of TWEPP Prague, Czech Republic, 3-7 September 2007, ISBN 978-92-9083-304-8, p.292

ICPPA2017 - The 3rd International Conference on Particle

Physics and Astrophysics

P. Aspell, CERN

10/4/2017

LV System

Architecture of the Level-1 Trigger

The CMS experiment at the CERN LHC, 2008 JINST 3 So8004

iη sectors

- Readout strips are arranged in eight in-sectors
- Each in sector comprises 384 strips, so that three VFATs (128 strips each) are used for the read-out of each insector
- iη sectors get wider from iη sector 1 to iη sector 8

