

The 3rd International Conference on Particle Physics and Astrophysics

Search for $K^+ \rightarrow \pi^+ \nu \nu$ at NA62

Silvia Martellotti*, on behalf of NA62 Collaboration

*INFN Laboratori Nazionali di Frascati & CERN

CERN

Hotel Intourist Kolomenskoye, Moscow, 2-5 October 2017

Outline

Theoretical introduction to the $K \rightarrow \pi v v$ rare decays

NA62 experiment at the CERN SpS

- Aim and strategy for the BR(K⁺ $\rightarrow \pi^+ \nu \nu$) measurement
- Detector overview
- Preliminary results with NA62 data
- Prospects

SM theoretical framework

The $K^+ \rightarrow \pi^+ \nu \nu$ decay is extremely suppressed

Flavor-changing neutral current quark transition $s \rightarrow dvv$.

Forbidden at tree level, dominated by short-distance dynamics (GIM mechanism)

Is characterized by a theoretical cleanness in the SM prediction of the BR($K^+ \rightarrow \pi^+ \nu \nu$): loops and radiative corrections are under control.

Highly suppressed & Very well predicted Excellent laboratory complementary to LHC

Stringent test of the SM and possible evidence for New Physics

Past measurement and prediction

Current theoretical prediction:

BR(K⁺ $\rightarrow \pi^+ \nu \nu$)_{SM} = (9.11 ± 0.72) x 10⁻¹¹

BR(K_L $\rightarrow \pi^0 \nu \nu$)_{SM} = (3.00 ± 0.30) x 10⁻¹¹

A.J. Buras, D.Buttazzo, J. Girrbach-Noe and R.Knegjens arXiv:1503.02693

- Main contribution to the errors comes from the uncertainties on the SM input parameters
- Intrinsic theoretical uncertainties (1-3%) slightly larger for the charged channel because of the corrections from lighter-quark contributions

Experimental status:

$$BR(K^+ \to \pi^+ \nu \bar{\nu})_{exp} = (17.3^{+11.5}_{-10.5}) \times 10^{-11}$$

Only measurement obtained by E787 and E949 experiments at BNL with stopped kaon decays (7 events)

Gap between theoretical precision and large experimental error motivates a strong experimental effort. Significant new constraints can be obtained.

Neutral decay $K_L \rightarrow \pi^0 v v$ has never been measured

New Physics from $K \rightarrow \pi \nu \nu$ decays

Measurement of BR of charged ($K^+ \rightarrow \pi^+ \nu \nu$) and neutral ($K_L \rightarrow \pi^0 \nu \nu$) modes can determine the **unitarity triangle** independently from B inputs

NA62 Experiment

Kaon at CERN SPS

The CERN-SPS secondary beam line already used for the NA48 experiment can deliver the required K+ intensity

400 GeV/c protons impinge on a beryllium target and produce a secondary charged beam: 6% are K⁺ (mixed with π and protons).
Signal acceptance considerations drive the choice of a 75 GeV/c K⁺ (1% momentum bite, ~ 100 µrad divergence)

NA62 Goal and Time Scale

Design criteria: kaon intensity, signal acceptance, background suppression

Decay in flight technique.

Kaons with high momentum. Signal signature: K⁺ track + π⁺ track

Basic ingredients:

- O(100 ps) Timing between sub-detectors
- O(10⁴) Background suppression from kinematics
- O(10⁷) μ -suppression (K⁺ $\rightarrow \mu^+ \nu$)
- O(10⁷) γ -suppression (from K⁺ $\rightarrow \pi^{+}\pi^{0}$, $\pi^{0}\rightarrow\gamma\gamma$)

BR(K⁺ $\rightarrow \pi^+ \nu \nu$) with 10% accuracy: O(100) SM events + control of systematics at % level

Assuming 10% signal acceptance and a BR($K^+ \rightarrow \pi^+ \nu \nu$) ~10⁻¹⁰ at least **10¹³ K⁺ decays are required**

2014 Pilot Run

2015 Commissioning Run

2016 Commissioning + Physics Run SM sensitivity reached O(10⁻¹⁰).

2017 Physics Run on going (May-October) —> Improve on the present state of the art.

2018 >= 4 months of data taking expected...

...The target of 10¹³ K⁺ decays by end of 2018 is reachable.

NA62 Apparatus

170 m long region starting about 100 m downstream of the beryllium target. Useful K⁺ decays will be detected in a **65 m long fiducial volume.**

Approximately cylindrical shape around the beam axis for the main detectors. Diameter varies from 20 to 400 cm.

Each detector send ~ 10 MHz of raw input data to the Level 0 trigger (FPGA) that selects 1 MHz of events. L1 and L2 triggers (software) guarantee a maximum of 10 kHz of acquisition rate.

Beam ID & Tracking: KTAG, GTK, CHANTI

KTAG is an upgrade of CERN **Cedar: ČE**renkov **D**ifferential counter with **A**chromatic **R**ing focus blind to all particles but kaons of appropriate momentum (75 GeV, K+ rate:~45MHz).

Steel vessel, 4.5 m long, filled with compressed nitrogen. New photo-detectors & readout.

σ_t ~70 ps Efficiency > 99%

GTK: GigaTracKer Spectrometer for K⁺ momentum and timing measurement

750 MHz beam environment. Inside an achromat in vacuum, 3 stations of 18000 silicon pixels (140 KHz/pixel) matching the beam dimensions (60 x 27 mm² divided into 10 read-out chips).

σ_t ~100 ps σ_{dx,dy} ≈ 0.016 mrad ΔP/P < 0.4%

CHANTI: **CH**arged **ANTI**counter detector: charged particle veto to reduce the background induced by inelastic interactions of the beam with the GTK3

6 stations of X-Y plastic scintillator bars coupled with optical fibers.

Efficiency > 99%

Secondary ID & Tracking: STRAW, RICH

Spectrometer with **STRAW** tubes for secondary particle momentum measurement

4 chambers (4 layers < 0.5 X_0) in vacuum, 7168 STRAW tubes with \otimes 1cm. Magnet $\sigma_t \sim 6 \text{ ns}$ provides a 270 MeV/c momentum kick in the horizontal plane. $\sigma_{dx,dy} \sim 130 \mu m$

CHOD: **CH**arged **OD**oscope, plastic scintillator covering the acceptance that provide fast signal to drive the L0 trigger and the data acquisition

Old CHOD σ_t ~ 250 ns, CHOD σ_t ~ 1 ns

RICH: Ring Imaging **CH**erenkov detector for the secondary particle identification

17 m long tank filled with neon gas (1 atm). Downstream end: mosaic of 20 spherical mirrors. Upstream end: ~2000 PMTs. Internal AI beam pipe keeps the beam particles in vacuum.

 μ/π separation at 15÷35 GeV $\sim 10^{-2}$ σ_t of a ring < 100 ps

Photon Veto: LAV, SAC & IRC

LAV: Large Angle Veto. 12 stations to veto γ with angles 8.5 < θ <50 mrad

Lead glass crystals read out by PMTs. First 11 stations are in vacuum. Each LAV station is made of 4 or 5 rings of crystals (160 – 256 lead glass blocks).

 $\sigma_t \sim 1 \text{ ns}$ 10⁻³ to 10⁻⁵ inefficiency (on γ down to 150 MeV)

IRC: Inner Ring Calorimeter. SAC: Small Angle Calorimeter. To veto γ with angles <1 mrad

Lead and plastic scintillator plates. Electromagnetic showers $\sigma_t < 1 \text{ ns}$ detected through Shashlik calorimeters 10^{-4} inefficiency on γ with energy > 1 GeV

NA48 LKr Calorimeter: to veto γ with angles 1 < θ <8.5 mrad and for PID.

Ionization chamber + liquid Krypton, 2x2 cm2	σ_t ~500 ps for electromagnetic clusters with energy > 3 GeV
cells. Inherited from NA48 and equipped with	σ _t ~1 ns for hadronic and MIP clusters
new readout electronics.	σ _{dx,dy} ~1 mm
	10 ⁻⁵ inefficiency on γ with energy > 10 GeV

Muon Veto: MUV1, MUV2, MUV3

MUV 3: Efficient fast Muon Veto used in the hardware trigger level.

Placed after an iron wall. 1 plane of 148 5cm thick scintillator tiles, each readout by 2 PMTs. Used in L0 trigger: reduction factor >10. Muon Rate: 10 MHz.

Time resolution ~500 ps Muon detection efficiency ~99.5%

MUV 1 and MUV 2: Hadronic calorimeters for the μ/π separation

2 modules of iron-scintillator plate sandwiches. Readout with LKr electronics.

cluster reconstruction within 20 ns from the track time at ±150 mm around the expected impact point

Analysis Strategy

Most discriminating variable: $m_{miss}^2 = (P_{K+} - P_{\pi+})^2$

Where the daughter charged particle is assumed to be a pion

Theoretical m²_{miss} distribution for signal and backgrounds of the main K⁺ decay modes: (signal is multiplied by a factor 10¹⁰).

2 signal regions, on each side of the $K^+ \rightarrow \pi^+ \pi^0$ peak (to eliminate 92% of the K^+ width)

Main background sources:

- $K^+ \rightarrow \pi^+ \pi^0$, $K^+ \rightarrow \mu^+ \nu$ non gaussian resolution and radiative tails
- $K^+ \rightarrow \pi^+ \pi^- non$ gaussian resolution tails
- decays with neutrino in final state

2016 Data

2016 data Goal: study the single event sensitivity of the apparatus down to 1 event over 10¹⁰ (reach **SM-expectation sensitivity**).

Data sample: preliminary exploratory analysis has been performed on about **2.3** × **10**¹⁰ K⁺ **decays** in fiducial region (**5%** of the total statistics: main physics sample at 40% of the nominal beam intensity)

Single downstream track selection with K⁺ matching:

• Timing π^+ :

σ(T_{CHOD}) ~ 250 ps, σ(T_{RICH}) ~ 150 ps

• Timing K+: $-(T \rightarrow 20me - (T \rightarrow 20me) \approx 100$

σ(T_{KTAG}) ~ 80ps, σ(T_{GTK}) ~ 100 ps
Spatial matching, i.e intersection of

GTK and Straw track:

σ(CDA) ~ 1.5 mm, 115 < Z_{vertex} < 165 m

Mis-tagging probability: ~1.7%

Measured kinematical background suppression: $K^+ \rightarrow \pi^+ \pi^0$: 6×10⁻⁴; $K^+ \rightarrow \mu^+ \nu$: 3×10⁻⁴.

Particle ID: π-μ separation

- Particle ID with calorimeters (MVA on LKr and MUVs): $\epsilon(\mu) \simeq 10^{-5}$, $\epsilon(\pi) \simeq 80\%$
- Particle ID with RICH: $\varepsilon(\pi)_{ring} \simeq 90\%$ (P π function), $\varepsilon(\pi)_{ID} \simeq 80\%$, $\varepsilon(\mu) \simeq 10^{-2}$

PID performance measurement with RICH and calorimeter combined: μ -suppression <10⁻⁷

Photon Rejection

Photon Veto condition: LKr, LAV, IRC, SAC

Preliminary Result

P_{π} estimated with RICH

Expected signal:

• $K^+ \rightarrow \pi^+ \nu \nu \simeq 0.064$ (normalization $K^+ \rightarrow \pi^+ \pi^0$)

Expected background:

- $K^+ \rightarrow \pi^+ \pi^0 \simeq 0.024$
- $K^+ \rightarrow \mu^+ \nu \simeq 0.011$
- $K^+ \rightarrow \pi^+ \pi^+ \pi^- \simeq 0.017$
- Beam-induced < 0.005</p>

(estimated with data-driven method)

No event in signal region*

*Event in box has m²_{miss}(NoGTK) - i.e. with nominal P_k - outside the signal region

....analysis optimization in progress!

Conclusion

NA62 experiment is running and collecting data

- Results from 5% of 2016 data presented, 2.3×10¹⁰ kaon decays
- No signal observed compared to expectation of 0.064 events
- Data taking to continue through 2018
- Analysis in progress

Thank you for the attention from the NA62 Collaboration*!

*~200 participants, ~30 institutions

Broader NA62 Physics Program

The high-intensity, high-performance NA62 setup is ideal for many other measurements

Standard Kaon Physics

- Measurements of the BR of all the main K⁺ decay modes
- Chiral perturbation theory studies: $K^+ \rightarrow \pi^+ \gamma \gamma$, $K^+ \rightarrow \pi^+ \pi^0 e^+ e^-$, $K^+ \rightarrow \pi^{0(+)} \pi^{0(-)} l^+ \nu$
- Precision measurement of $R_K = \Gamma(K^+ \rightarrow e^+ \nu_e)/(K^+ \rightarrow \mu^+ \nu_\mu)$

...and other new physics searches

Searches for lepton-flavour or lepton-number violating decays

• $K^+ \rightarrow \pi^+ \mu^\pm e^\mp$, $K^+ \rightarrow \pi^- \mu^+ e^+$, $K^+ \rightarrow \pi^- e^+ e^+$, $K^+ \rightarrow e^+ \nu \gamma$, $K^+ \rightarrow \pi^- \mu^+ \mu^+$ (+ radiative modes)

 10^{13} K⁺: expected sensitivity 10^{-12} . Improve by ~x100 the past results.

Searches for exotic particles

Heavy neutral leptons, axion-like particles, dark photons

Neutral pion

- π^0 form factor
- Ultra-rare/forbidden decays ($\pi^0 \rightarrow \gamma \gamma \gamma$, $\pi^0 \rightarrow \gamma \gamma \gamma \gamma$, $\pi^0 \rightarrow VV$)

KLEVER project: $K_L \rightarrow \pi^0 v v$ at the SPS

Estimate cost, timescale, and performance for a future experiment to measure BR($K_L \rightarrow \pi^0 vv$) at the SPS

Main detector/veto systems:

- AFC Active final collimator/upstream veto
- LAV1-26 Large-angle vetoes (26 stations)
 - LKr NA48 LKr calorimeter
- IRC/SAC Small-angle vetoes (SAC in neutral beam)
 - CPV Charged-particle veto

Operate in ECN3 and make use of the NA48 LKr calorimeter as primary veto. In 5 years of running (10^7 s/yr) at a beam intensity of 2 × 10^{13} pot/16.8 s (6x of NA62, Target area and transfer lines would require upgrades):

 $65~K_L \rightarrow \pi^0 \nu \nu$ events are expected with $S/B \sim 1$