

SM Higgs Boson Measurements with the ATLAS Experiment at 13 TeV

Laurelle Maria Veloce, University of Toronto On behalf of the ATLAS Collaboration

Higgs Boson Production and Decay at the LHC

Higgs Boson Production at the LHC

- Gluon-gluon fusion (ggH)
 - largest cross section
- Vector boson fusion (VBF)
 - characterized by presence of two ۲ forward jets
- Associated production with vector boson (VH, V = W/Z)
 - investigate leptonic decays of W/Z
- Associated production with tt (ttH)
 - leptonic decays of top

15

WG 201

HC HIGGS XS

Higgs Boson Decay Modes

- Higgs to boson channels have been observed
 - ZZ*: low rate, but high signalto-background ratio
 - yy: relatively higher rate, but much lower signal-tobackground ratio
- ZZ* and yy allow one to fully reconstruct invariant mass of Higgs
- searches for Higgs to fermion decays are challenging
 - bb: highest cross section, but very large backgrounds
- µµ: very small rate and large background from Drell-Yan
 ATLAS

The ATLAS Detector

A general-purpose detector consisting of an inner tracking system, electromagnetic and hadronic calorimeters, and a muon spectrometer

Measurements from $H \rightarrow ZZ^* \rightarrow 4I$ and $H \rightarrow \gamma \gamma$ channels

ICPPA-2017 Moscow Russia

125 GeV Higgs candidate announced in 2012 *Phys. Lett. B 716 (2012) 1-29*

- Results from Run 1 show the new particle to be consistent with a Standard Model Higgs boson
- results shown are for the combined ATLAS and CMS Run 1 results
- but there is still much to do!
 - precision measurements of particle's properties to determine whether it is fully consistent with a SM Higgs
 - production and decay modes still to be observed, including bb, ttH, $\mu\mu$...
 - factor of ~2 increase in cross section in Run 2

μ_{ZF}

JHEP 1608 (2016) 045

Once m_H is determined, all other properties of Higgs are fixed

Higgs Boson Measurements Rare decay (~0.2%), but Rare decay (~0.2%), but

Rare decay (~0.2%), but high resolution results in narrow resonance on top of smoothly falling background

Selection Cuts:

- At least two photon candidates
- Photons must be isolated, fall within $|\eta| < 2.37$, and with $E_T m_{\gamma\gamma} > 0.35$ and $E_T m_{\gamma\gamma} > 0.25$ Important backgrounds include $\gamma\gamma$ production, γ -jet production, and dijet production
- an unbinned likelihood fit is performed on m_{γγ}
- continuum background is obtained from data

Higgs Boson Measurements $H \rightarrow ZZ^* \rightarrow |+|-|+|-$

low branching ratio, but high S/B for all four final states (4mu, 4e, 2mu2e, 2e2mu)

Selection Cuts:

- 2 pairs of isolated, sameflavour, oppositely-charged leptons, with one lepton pair close to the Z mass
 Important backgrounds include ZZ* continuum, as well as contributions from Z+jets and tt-bar
- per-event method for mass determination
- continuum background is obtained from MC, while Z+jets and ttbar from data

Higgs Boson mass measurement in $H \rightarrow ZZ^* \rightarrow 4I$ and $H \rightarrow \gamma\gamma$ channels

- m_H not predicted in the SM, but once measured, all other properties are fixed
- therefore a precise measurement is required to investigate the Standard Model in detail
- mass measurement is performed in two channels with high mass resolution (~1-2%) due to fully reconstructed final states

Higgs Boson fiducial and total cross sections in $H \rightarrow ZZ^* \rightarrow 4I$ and $H \rightarrow \gamma\gamma$ channels

- measure cross sections in fiducial region which closely follows the kinematic and selection cuts to reduce model dependency in extrapolation
- reconstruction acceptance relative to fiducial is high (50% (H4I), 75% (Hγγ))
- correct for detector effects by "unfolding"; performed bin-by-bin
- agreement with SM

Higgs Boson fiducial and total cross sections in $H \rightarrow ZZ^* \rightarrow 4I$ and $H \rightarrow \gamma\gamma$ channels

- measure cross sections in fiducial region which closely follows the kinematic and selection cuts to reduce model dependency in extrapolation
- reconstruction acceptance relative to fiducial is high (50% (H4I), 75% (Hγγ))
- correct for detector effects by "unfolding"; performed bin-by-bin

Higgs Boson fiducial and total cross sections in $H \rightarrow ZZ^* \rightarrow 4I$ and $H \rightarrow \gamma\gamma$ channels

Decay channel		Total cross section $(pp \to H + X)$)
	$\sqrt{s} = 7 \mathrm{TeV}$	$\sqrt{s} = 8 \mathrm{TeV}$	$\sqrt{s} = 13 \mathrm{TeV}$
$H \to \gamma \gamma$	35^{+13}_{-12} pb	$30.5^{+7.5}_{-7.4} \text{ pb}$	$47.9^{+9.1}_{-8.6} \text{ pb}$
$H \to ZZ^* \to 4\ell$	33^{+21}_{-16} pb	$37^{+9}_{-8} { m ~pb}$	$68.0^{+11.4}_{-10.4} \text{ pb}$
Combination	34 ± 10 (stat.) $^{+4}_{-2}$ (syst.) pb	$33.3^{+5.5}_{-5.3}$ (stat.) $^{+1.7}_{-1.3}$ (syst.) pb	$57.0^{+6.0}_{-5.9}$ (stat.) $^{+4.0}_{-3.3}$ (syst.) pb
SM prediction $[8]$	$19.2\pm0.9~\rm{pb}$	$24.5\pm1.1~\rm{pb}$	$55.6^{+2.4}_{-3.4} \text{ pb}$

Higgs boson Simplified Template Cross Sections measurements for $H \rightarrow ZZ^* \rightarrow 4I$ and $H \rightarrow \gamma\gamma$

- measure different production cross sections (xBR) in exclusive regions of phase space
 - maximize

 measurement
 precision and
 sensitivity to new
 physics
 - avoid modeldependent extrapolation

Higgs boson Simplified Template Cross Sections measurements for $H \rightarrow ZZ^* \rightarrow 4I$ and $H \rightarrow \gamma\gamma$

fit results normalized to SM predictions

New Results for Higgs to Fermion Decays

Evidence for $H \rightarrow bb$ decay

- H→bb is the most common decay of the Higgs (58% for m_H = 125 GeV)
- very large backgrounds from multi-jet production
 - tag events via Higgs produced in association with leptonic W or Z

Evidence for $H \rightarrow bb$ decay

- event kinematics and topology are combined into a multivariate • discriminant
- binned maximum-likelihood fit applied to all categories and channels ulletsimultaneously
- additional dijet-mass analysis and validation via diboson analysis
 - see clear excess of VZ, $Z \rightarrow bb$ events in the diboson analysis, with a significance of 5.8σ (5.3σ)

Search for $H \rightarrow \mu\mu$ decay

- challenging due to the very low S/B (0.022% BR!)
- BDT is used to select for VBF-like events
- events are split into categories according to transverse momentum and pseudo-rapidity of muons
- fit the m_{µµ} distribution over 110-160 GeV range using an analytical S+B model
- no evidence yet for Higgs to muon decays

Observed (expected) limit for 125 GeV Higgs: 3.0 (3.1) for 95% C.L., combined with Run 1, 2.8 (2.9), times the SM prediction

Conclusions and Outlook

- comprehensive strategy to investigate the Standard Model nature of the 125 GeV Higgs
- updated results for channels with more statistics
- no significant deviations from Standard Model expectations
- new results on Higgs decays to bb and $\mu\mu$
- More measurements to come stay tuned!

Reference List

13 TeV Combination

 ATLAS, "Measurement of the Higgs boson mass in the H→ZZ→4I and H→γγ channels with sqrt(s) = 13 TeV pp collisions using the ATLAS detector

 ATLAS, "Combined measurements of Higgs boson production and decay in H→ZZ→4I and H→γγ channels using sqrt(s) = 13 TeV pp collision data collected with the ATLAS experiment", ATLAS-CONF-2017-047, (2017).

Higgs Boson Discovery

- CERN, "Measurements of the Higgs boson production and decay rates and constraints on its couplings from a combined ATLAS and CMS analysis of the LHC pp collision data at sqrt(s) = 7 and 8 TeV" ATLAS-CONF-2015-044, (2015).
- ATLAS & CMS, "Combined Measurement of the Higgs Boson Mass in pp Collisions at sqrt(s) = 7 and 8 TeV with the ATLAS and CMS Experiments", Phys. Rev. Lett. 114, 191803, (2015).

H→ZZ→4I

- ATLAS, "Measurement of the Higgs boson coupling properties in the H→ZZ→4I decay channel at sqrt(s) = 13 TeV with the ATLAS detector", ATLAS-CONF-2017-043 (2017).
- ATLAS, "Measurement of inclusive and differential cross section in the H→ZZ→4I decay channel in pp collisions at sqrt(s) = 13 TeV with the ATLAS detector", arXiv:1708.02810, (2017).

Η→γγ

• ATLAS, "Measurement of Higgs boson properties in the diphoton decay channel with 36.1 fb-1 collision data at the center-of-mass energy of 13 TeV with the ATLAS detector", ATLAS-CONF-2017-045, (2017).

Fermion Decays

- ATLAS, "Search for the dimuon decay of the Higgs boson in pp collisions at sqrt(s) = 13 TeV with the ATLAS detector", Phys. Rev. Lett. **119**, 051802 (2017).
- ATLAS, "Evidence for the H→bb decay with the ATLAS detector", arXiv:1708.03299 (2017).

Particle Signatures in ATLAS

Electrons Electron Calorimeter

Photons Electron Calorimeter

Muons Inner Detector + Muon Spectrometer

> Neutrinos Missing Energy

Hadrons (Jets) Hadronic Calorimeter

Higgs Boson global signal strength in $H \rightarrow ZZ^* \rightarrow 4I$ and $H \rightarrow \gamma\gamma$ channels

Mass combination Systematic Uncertainties

Systematic effect	Uncertainty on $m_H^{ZZ^*}$ [MeV]
Muon momentum scale	40
Electron energy scale	20
Background modelling	10
Simulation statistics	8

Mass combination Systematic Uncertainties

Source	Systematic uncertainty on $m_H^{\gamma\gamma}$ [MeV]
LAr cell non-linearity	± 200
LAr layer calibration	± 190
Non-ID material	± 120
Lateral shower shape	± 110
ID material	± 110
Conversion reconstruction	± 50
$Z \to ee$ calibration	± 50
Background model	± 50
Primary vertex effect on mass scale	± 40
Resolution	$^{+20}_{-30}$
Signal model	± 20

Mass combination Systematic Uncertainties

Source	Systematic uncertainty on m_H [MeV]
LAr cell non-linearity	90
LAr layer calibration	90
Non-ID material	60
ID material	50
Lateral shower shape	50
$Z \rightarrow ee$ calibration	30
Muon momentum scale	20
Conversion reconstruction	20

$H \rightarrow ZZ \rightarrow 4I$ validation of mass determination

$H \rightarrow ZZ \rightarrow 4I$ fiducial phase space selection

Leptons and jets				
Muons:	$p_{\rm T} > 5 \ {\rm GeV}, \ \eta < 2.7$			
Electrons:	$p_{\rm T} > 7 {\rm GeV}, \eta < 2.47$			
Jets:	$p_{\rm T} > 30 { m GeV}, y < 4.4$			
Jet–lepton overlap removal:	$\Delta R(\text{jet}, \ell) > 0.1 (0.2) \text{ for muons (electrons)}$			
I	Lepton selection and pairing			
Lepton kinematics:	$p_{\rm T} > 20, 15, 10 {\rm ~GeV}$			
Leading pair (m_{12}) :	SFOS lepton pair with smallest $ m_Z - m_{\ell\ell} $			
Subleading pair (m_{34}) :	remaining SFOS lepton pair with smallest $ m_Z - m_{\ell\ell} $			
Event selection	on (at most one quadruplet per channel)			
Mass requirements:	50 GeV $< m_{12} < 106$ GeV and 12 GeV $< m_{34} < 115$ GeV			
Lepton separation:	$\Delta R(\ell_i, \ell_j) > 0.1 (0.2)$ for same- (different-)flavour leptons			
J/ψ veto:	$m(\ell_i, \ell_j) > 5 \text{ GeV}$ for all SFOS lepton pairs			
Mass window:	$115 \text{ GeV} < m_{4\ell} < 130 \text{ GeV}$			

ICPPA-2017 Moscow Russia

$H \rightarrow ZZ \rightarrow 4I$ fiducial and total cross section uncertainties

Observable	Stat	Systematic			Domina	nt systematic	compone	ents [%]	
	unc. $[\%]$	unc. $[\%]$	e	μ	jets	ZZ^* theo	Model	$Z + \text{jets} + t\bar{t}$	Lumi
$\sigma_{ m comb}$	14	7	3	3	< 0.5	2	0.8	0.8	4
$\mathrm{d}\sigma \;/\; \mathrm{d}p_{\mathrm{T},4\ell}$	30 - 150	3 - 11	1 - 4	1 - 3	< 0.5	< 7	< 6	1 - 6	3 - 5
$\mathrm{d}\sigma \; / \; \mathrm{d}p_{\mathrm{T},4\ell} \; (\mathrm{0j})$	31 - 52	10 - 18	2 - 5	1 - 4	3 - 16	3–8	1	2 - 3	3 - 5
$\mathrm{d}\sigma \; / \; \mathrm{d}p_{\mathrm{T},4\ell} \; (\mathrm{1j})$	35 - 15	6 - 30	1 - 4	1 - 3	2 - 29	1 - 4	1 - 11	$1\!-\!2$	3 - 5
$\mathrm{d}\sigma / \mathrm{d}p_{\mathrm{T},4\ell}$ (2j)	30 - 41	5 - 21	1 - 3	1 - 3	2 - 19	1 - 5	1 - 7	1 - 2	3 - 5
$\mathrm{d}\sigma \; / \; \mathrm{d} y_{4\ell} $	29 - 120	5 - 8	2 - 4	2 - 3	< 0.5	1 - 2	< 1	1	3 - 5
$d\sigma / d \cos \theta^* $	31 - 100	5 - 8	2 - 4	2 - 3	< 0.5	1 - 2	< 2	1 - 4	3 - 5
$\mathrm{d}\sigma \; / \; \mathrm{d}m_{34}$	26 - 53	4 - 13	2 - 5	1 - 5	< 0.5	1 - 6	< 1	1 - 3	3 - 5
$\mathrm{d}^2\sigma \;/\;\mathrm{d}m_{12}\;\mathrm{d}m_{34}$	21 - 40	4 - 12	2-4	1 - 4	< 0.5	1 - 6	< 1	1 - 4	3 - 5
$\mathrm{d}\sigma \; / \; \mathrm{d}N_\mathrm{jets}$	22 - 44	6 - 31	1 - 4	1 - 3	4 - 22	2 - 4	1 - 22	1 - 2	3 - 5
$\mathrm{d}\sigma \; / \; \mathrm{d}p_{\mathrm{T}}^{\mathrm{lead.jet}}$	30 - 53	5 - 18	1 - 4	1 - 3	3 - 16	2 - 3	1 - 8	1 - 2	3 - 5
$\mathrm{d}\sigma \;/\; \mathrm{d}\Delta\phi_\mathrm{jj}$	29 - 43	9 - 17	1 - 3	1 - 3	8 - 14	3 - 4	1 - 7	1	3 - 5
$\mathrm{d}\sigma \; / \; \mathrm{d}m_\mathrm{jj}$	23 - 100	9 - 27	1-4	1-4	8-24	3–8	1 - 7	< 3	3 - 5

$H \rightarrow \gamma \gamma \& H \rightarrow ZZ \rightarrow 4I$ categories

$H \rightarrow \gamma \gamma \& H \rightarrow ZZ \rightarrow 4I$ categories

$H \to \gamma \gamma$	$H \to ZZ^* \to 4\ell$
$t\bar{t}H+tH$ leptonic (two tHX and one $t\bar{t}H$ categories)	$t\bar{t}H$
$t\bar{t}H+tH$ hadronic (two tHX and four BDT $t\bar{t}H$ categories)	VH leptonic
VH dilepton	2-jet VH
VH one-lepton, $p_{\rm T}^{\ell+{\rm MET}} \ge 150 {\rm ~GeV}$	2-jet VBF, $p_{\rm T}^{j1} \ge 200 \ GeV$
VH one-lepton, $p_{\rm T}^{\bar{\ell}+{\rm MET}}$;150 GeV	2-jet VBF, $p_{T}^{j_{1}}$ j200 GeV
$VH E_{\rm T}^{\rm miss}, E_{\rm T}^{\rm miss} \ge 150 {\rm ~GeV}$	1-jet ggF, $p_{\rm T}^{4\ell} \ge 120 \ GeV$
$VH E_{\rm T}^{\rm miss}, E_{\rm T}^{\rm miss}$ j150 GeV	1-jet ggF, 60 GeV _i $p_{\rm T}^{4\ell}$ i120 GeV
$VH + VBF p_T^{j1} \ge 200 \text{ GeV}$	1-jet ggF, $p_{\rm T}^{4\ell}$ j60 GeV
VH hadronic (BDT tight and loose categories)	0-jet ggF
VBF, $p_{\rm T}^{\gamma\gamma jj} \ge 25$ GeV (BDT tight and loose categories)	
VBF, $p_{\rm T}^{\gamma\gamma jj}$;25 GeV (BDT tight and loose categories)	
ggF 2-jet, $p_{\rm T}^{\gamma\gamma} \ge 200 { m ~GeV}$	
ggF 2-jet, 120 GeV $\leq p_{\rm T}^{\gamma\gamma}$ j200 GeV	
ggF 2-jet, 60 GeV $\leq p_{\rm T}^{\gamma\gamma}$ j120 GeV	
gg F 2-jet, $p_{\rm T}^{\gamma\gamma} < 60~{\rm GeV}$	
ggF 1-jet, $p_{\rm T}^{\gamma\gamma} \ge 200 { m ~GeV}$	
ggF 1-jet, 120 GeV $\leq p_{\rm T}^{\gamma\gamma}$ j200 GeV	
ggF 1-jet, 60 GeV $\leq p_{\rm T}^{\gamma\gamma}$ j120 GeV	
ggF 1-jet, $p_{\rm T}^{\gamma\gamma}$; 60 GeV	
ggF 0-jet (central and forward categories)	

Higgs boson STXS cross sections measurements for $H \rightarrow ZZ^* \rightarrow 4I$ and $H \rightarrow \gamma\gamma$

$H \rightarrow \gamma \gamma$ fiducial definitions

Objects	Definition
Photons	$ \eta < 1.37 \text{ OR } 1.52 < \eta < 2.37, \ p_{\mathrm{T}}^{\mathrm{iso},0.2} / p_{\mathrm{T}}^{\gamma} < 0.05$
Jets	anti- k_t , $R = 0.4$, $p_T > 30 \text{GeV}$, $ y < 4.4$
Leptons, ℓ	$e \text{ or } \mu, \ p_{\mathrm{T}} > 15 \mathrm{GeV}, \ \eta < 2.47 \text{ (excluding } 1.37 < \eta < 1.52 \text{ for } \ell = e \text{)}$
Fiducial region	Definition
Diphoton fiducial	$N_{\gamma} \ge 2, p_{\mathrm{T}}^{\gamma_1} > 0.35 m_{\gamma\gamma}, p_{\mathrm{T}}^{\gamma_2} > 0.25 m_{\gamma\gamma}$
VBF-enhanced	Diphoton fiducial, $N_j \ge 2$, $m_{jj} > 400 \text{ GeV}$, $ \Delta y_{jj} > 2.8$, $ \Delta \phi_{\gamma\gamma,jj} > 2.6$
$N_{\text{lepton}} \ge 1$	Diphoton fiducial, $N_{\ell} \ge 1$
High $E_{\rm T}^{\rm miss}$	Diphoton fiducial, $E_{\rm T}^{\rm miss} > 80 \ {\rm GeV}, \ p_{\rm T}^{\gamma\gamma} > 80 \ {\rm GeV}$
$t\bar{t}H$ -enhanced	Diphoton fiducial, $(N_j \ge 4, N_{\text{b-jets}} \ge 1)$ OR $(N_j \ge 3, N_{\text{b-jets}} \ge 1, N_{\ell} \ge 1)$

$H \rightarrow \gamma \gamma$ fiducial cross section uncertainties

Source		Uncertainty on fiducial cross section $(\%)$					
	Diphoton VBF-enhanced		$N_{\text{lepton}} \ge 1$	$t\bar{t}H$ -enhanced	High $E_{\rm T}^{\rm miss}$		
				-			
Fit (stat.)	17%	22%	72%	150%	53%		
Fit (syst.)	6%	8%	28%	170%	13%		
Photon efficiency	1.8%	1.8%	1.8%	1.8%	1.9%		
Jet energy scale/resolution	-	8.9%	-	4.5%	6.9%		
<i>b</i> -jet flavour tagging	-	-	-	3%	-		
Lepton selection	-	-	0.8%	0.2%	-		
Pileup	1.1%	2.9%	1.3%	4.4%	2.5%		
Theoretical modeling	4.2%	8.2%	8.7%	12.7%	30%		
Luminosity	3.2%	3.2%	3.2%	3.2%	3.2%		

H→bb event selection

Selection	0-lepton	1-lepton		2-lepton			
		e sub-channel	μ sub-channel				
Trigger	$E_{\mathrm{T}}^{\mathrm{miss}}$	Single lepton	$E_{\mathrm{T}}^{\mathrm{miss}}$	Single lepton			
Leptons	0 loose leptons	1 tight electron	1 medium muon	2 loose leptons with $p_{\rm T} > 7 {\rm ~GeV}$			
	with $p_{\rm T} > 7 {\rm ~GeV}$	$p_{\rm T} > 27 { m ~GeV}$	$p_{\rm T} > 25 { m ~GeV}$	≥ 1 lepton with $p_{\rm T} > 27$ GeV			
$E_{\mathrm{T}}^{\mathrm{miss}}$	$> 150 { m ~GeV}$	$> 30 { m GeV}$	_	_			
$m_{\ell\ell}$	_		_	$81 \text{ GeV} < m_{\ell\ell} < 101 \text{ GeV}$			
Jets	Exactly	2 or 3 jets		Exactly 2 or ≥ 3 jets			
Jet $p_{\rm T}$		>	$\cdot 20 \text{ GeV}$				
$b ext{-jets}$	Exactly 2 b -tagged jets						
Leading <i>b</i> -tagged jet $p_{\rm T}$	$> 45 { m ~GeV}$						
H_{T}	> 120 (2 jets), > 150 GeV (3 jets)	—		_			
$\min[\Delta \phi(ec{E}_{\mathrm{T}}^{\mathrm{miss}}, \mathrm{jets})]$	$> 20^{\circ} (2 \text{ jets}), > 30^{\circ} (3 \text{ jets})$	_		_			
$\Delta \phi(ec{E}_{ m T}^{ m miss}, ec{bb})$	$> 120^{\circ}$		_	_			
$\Delta \phi(ec{b}_1,ec{b}_2)$	$< 140^{\circ}$		_	_			
$\Delta \phi(ec{E}_{ m T}^{ m miss},ec{E}_{ m T,trk}^{ m miss})$	< 90°	_		—			
$p_{\rm T}^V$ regions	> 150 GeV (75, 150] GeV, $> 150 GeV$						
Signal regions	\checkmark	$m_{bb} \ge 75 \text{ GeV or } m_{top} \le 225 \text{ GeV}$		$m_{bb} \geq 75 \text{ GeV} \text{ or } m_{top} \leq 225 \text{ GeV}$		Same-flavour leptons	
			-	Opposite-sign charge ($\mu\mu$ sub-channel)			
Control regions	_	$m_{bb} < 75 \text{ GeV}$ ar	nd $m_{\rm top} > 225 {\rm ~GeV}$	Different-flavour leptons			

ICPPA-2017 Moscow Russia

ATLAS-CONF-2017-043

H→bb event uncertainties

Source of uncertainty σ_{μ}				
Total	0.39			
Statistical		0.24		
Systematic		0.31		
Experimenta	l uncertainties			
Jets		0.03		
$E_{\mathrm{T}}^{\mathrm{miss}}$		0.03		
Leptons		0.01		
	b-jets	0.09		
b-tagging	<i>c</i> -jets	0.04		
	light jets	0.04		
	extrapolation	0.01		
Pile-up		0.01		
Luminosity 0.04				
Theoretical and modelling uncertainties				
Signal 0.17				
_				
Floating nor	malisations	0.07		
Z + jets		0.07		
W + jets		0.07		
$t\overline{t}$	0.07			
Single top qu	ıark	0.08		
Diboson		0.02		
Multijet		0.02		
MC statistic	al	0.13		

Diboson production

Dimuon expected events

	S	В	S/\sqrt{B}	FWHM	Data
Central low $p_{\rm T}^{\mu\mu}$	11	8000	0.12	$5.6 \mathrm{GeV}$	7885
Non-central low $p_{\rm T}^{\mu\mu}$	32	38000	0.16	$7.0~{\rm GeV}$	38777
Central medium $p_{\rm T}^{\overline{\mu}\mu}$	23	6400	0.29	$5.7~{\rm GeV}$	6585
Non-central medium $p_{\rm T}^{\mu\mu}$	66	31000	0.37	$7.1~{\rm GeV}$	31291
Central high $p_{\rm T}^{\mu\mu}$	16	3300	0.28	$6.3~{\rm GeV}$	3160
Non-central high $p_{\rm T}^{\mu\mu}$	40	13000	0.35	$7.7~{\rm GeV}$	12829
VBF loose	3.4	260	0.21	$7.6 \mathrm{GeV}$	274
VBF tight	3.4	78	0.38	$7.5~{\rm GeV}$	79

Bin-by-bin unfolding

$$\sigma_{i,fid} = \sigma_i \times A_i \times BR = \frac{N_{i,fit}}{L \times C_i}$$

 $\begin{array}{l} A_i = \mbox{acceptance} \\ \hline C_i = \mbox{correction for detector efficiency and resolution} \\ \hline N_{i,fit} = \mbox{number of signal events observed} \\ \hline \sigma_i = \mbox{total cross section} \end{array}$

