

Recent results from the NA48 experiment at CERN

Sergey Shkarovskiy

Joint Institute for Nuclear Research, Dubna

on behalf of the NA48/2 collaboration

ICPPA'2017 2-5 October, 2017 Moscow, Russia

Outline

- NA48/2 experiment
- K_{13} form factors precision measurement
- Measurement of $Br(K^{\pm} \rightarrow \mu^{\pm} \nu_{\mu} e^{+} e^{-})$
- Conclusion

2 - 5 October, 2017

NA48/2 detector

Main detector components:

- Magnetic spectrometer (4 DCHs): 4 views/DCH inside a He tank Δp/p = 1.02% ⊕ 0.044%*p [p in GeV/c].
- Hodoscope fast trigger; precise time measurement (150ps).
- Liquid Krypton EM calorimeter (LKr) High granularity, quasi-homogenious $\sigma_{\rm E}/{\rm E} = 3.2\%/{\rm E}^{1/2} \oplus 9\%/{\rm E} \oplus 0.42\%$ $\sigma_{\rm x} = \sigma_{\rm y} = 0.42/{\rm E}^{1/2} \oplus 0.06 {\rm cm}$ [E in GeV]. (0.15cm@10GeV).
- Hadron calorimeter, muon veto counters, photon vetoes.

 $K^{\pm} \rightarrow \pi^0 l^{\pm} \nu$ (K[±]₁₃) form factors

exper. input for $|V_{us}|$ extraction (apart from $\Gamma(K_{13}\gamma)$)

Without radiative effects : $\rho_0 = d^2 N/(dE_l dE_{\pi}) \sim A f_+^2(t) + B f_+(t) f_-(t) + C f_-^2(t)$, where

 $t = (P_{K} - P_{\pi})^{2} = M_{K}^{2} + M_{\pi}^{2} - 2 M_{K} E_{\pi}$ $f_{-}(t) = (f_{+}(t) - f_{0}(t))(m_{K}^{2} - m_{\pi}^{2})/t .$ (just another formulation, f_{0} is «scalar» and f_{+} is «vector» FF), E_{I} is charged lepton energy, E_{π} is π^{0} energy (both in the kaon rest frame).

$$A = M_{K}(2 E_{I}E_{v} - M_{K}(E_{\pi}^{max} - E_{\pi})) + M_{I}^{2}((E_{\pi}^{max} - E_{\pi})/4 - E_{v})$$

$$B = M_{I}^{2}(E_{v} - (E_{\pi}^{max} - E_{\pi})/2) \text{ negligible for Ke3}$$

$$C = M_{I}^{2}(E_{\pi}^{max} - E_{\pi})/4 \text{ negligible for Ke3}$$

$$E_{\pi}^{max} = (M_{K}^{2} + M_{\pi}^{2} - M_{I}^{2})/(2 M_{K})$$

FF Parameterisation (PDG name)	f ₊ (t,parameters)	f ₀ (t,parameters)
Quadratic (linear for $\bar{f}_0(t)$)	$1 + \lambda'_{+} t/m_{\pi}^{2} + \frac{1}{2} \lambda''_{+} (t/m_{\pi}^{2})^{2}$	$1 + \lambda'_0 t/m_{\pi}^2$
Pole	$M_v^2 / (M_v^2 - t)$	$M_{s}^{2} / (M_{s}^{2} - t)$
Dispersive* H(t), G(t): functions fixed from theory and other experiments. Depend on 2 (H) and 3 (G) extra external parameters known with a given* uncertainty.	exp((Λ ₊ + H(t)) t/m ² _π)	exp((ln[C]-G(t)) t/(m _K ²-m² _π))

* [V. Bernard, M. Oertel, E. Passemar, J. Stern. Phys.Rev. D80 (2009) 034034]

We use MC radiative decay generator of C.Gatti [Eur.Phys.J. C45 (2006) 417–420] provided by KLOE collaboration. It includes $f_0 = f_+ = 1 + \lambda'_+ t/m_{\pi}^2$.

2 - 5 October, 2017

Reconstruction

- Data: 16 special runs from the NA48/2 data taken in 2004 (3 days)
- **Trigger:** 1 charged track (2 hodoscope hits) and $E_{LKr} > 10$ GeV
- Beam geometry and average momentum P_b are measured from $K^{\pm} \rightarrow \pi^{\pm} \pi^{+} \pi^{-}$. In the K₁₃ analysis the reconstruction of Kaon momentum has 2 solutions. Best solution is $\Delta P = |P_K - P_b|$ and $\Delta P < 7.5 \text{ GeV/c}$

Decay vertex

CDA (previous analysis 2012):

- Systematic shift of the vertex closer to the beam
- High sensitivity to exact beam shape simulation

Neutral vertex (this analysis):

- X_n , Y_n = impact point of charged track at Z=Z_n plane
- No transverse bias

Selection

General cuts:

- A pair of clusters in-time (within 5 ns) without any in-time extra clusters
- Distance between the clusters in a pair > 20 cm
- $E(\pi^0) > 15$ GeV (for the trigger efficiency)
- Compatibility of neutral vertex (X_n, Y_n, Z_n) with beam axis

Track selection:

- A good track in-time with the π^0 within 10 ns.
- No extra good track within 8 ns (against showers).

K_{e3}:

- 1 track with p>5 GeV/c
- Track with E/p > 0.9
- p_{T}^{v} (w.r.t. beam axis) > 0.03 GeV/c
- $(p_{L}^{v})^{2} > 0.0014 \ (\text{Gev/c})^{2}$

K_{μ3}:

- 1 track with p>10 GeV/c
- Track with $\overline{E/p} < 0.9$ and MUV signal
- Selective cuts against $K^{\scriptscriptstyle\pm} \to \pi^{\scriptscriptstyle\pm} \, \pi^0$ decays

(followed by $\pi^{\pm} \rightarrow \mu^{\pm} v_{\mu}$ decay)

• Selective cuts against $K^{\pm} \rightarrow \pi^{\pm} \pi^{0} \pi^{0}$ decays (followed by $\pi^{\pm} \rightarrow \mu^{\pm} \nu_{\mu}$ decay, missing π^{0})

Residual background from 2π and 3π decay very small: O(10⁻⁴ -10⁻³)

2 - 5 October, 2017

Experimental Dalitz plots and fits areas (5x5 MeV cells)

Results for the joint K₁₃ analysis

	Quadratic parameterization (in units of 10 ⁻³)		Pole paran (in N	neterization /IeV)	Dispersive parameterization (in units of 10 ⁻³)		
	λ'_+	λ''+	λ'₀	M _v	M _s	Λ_+	In[C]
Central value	23.35	1.73	14.90	894.3	1185.5	22.67	189.12
Stat. error	0.75	0.29	0.55	3.2	16.6	0.18	4.91
Syst. error	1.23	0.41	0.80	5.4	35.3	0.55	11.09
Total error	1.44	0.50	0.97	6.3	35.5	0.58	12.13
χ²/ndf	1	004.6/107	3	1001.	1/1074	998.3	B/1074

Analysis has been performed:

- for K_{e3} and $K_{\mu3}$ separately
- for the combined K_{13} sample (joint fit)

	Correlation coefficients						
	λ''+	λ' ₀	M _s	In[C]			
λ'_+	-0.954	-0.076					
λ''+		0.035					
M _v			- 0.278				
Λ_+				- 0.035			

Joint K₁₃ results

- comparison for quadratic fit: $\lambda'_{+}, \lambda''_{+}, \lambda'_{0}$
- parameter correlation (1σ ellipses)
- black ellipse: NA48/2
- comparison to other experiments

28

27

25

24

23

22

21

20

19

18

8

 $\lambda'_{\!+\!\!\!\!\!26}$

4.5

ICPPA'2017, Moscow, Russia

$K^{\pm} \rightarrow \mu^{\pm} \nu_{\mu} e^{\pm} e^{\pm} decay$

Inner Bremsstrahlung (IB)

and their interference (INT) Inner Bremsstrahlung (IB) Structu pure QED process

Structure Dependent radiation (SD) CHPT contribution

- Phase space dominated by tree level diagrams.
- Exactly calculated inside SM.

- Significant contribution for high M_{ee}
- CHPT FF contribution increases the tree level Br by 70%

Test of ChPT at $O(p^4)$	Biinens et al	(1993) - Nucl Phys	B396·81–118
rest of Cill 1 at O(p),	Difficits ct. al.	(1993) = 1 vuct. 1 mys.,	DJ90.01-110

	Tree Level	CHPT Form Factors
Full phase space	2.49x10 ⁻⁵	2.49x10 ⁻⁵
$z \ge (140 MeV/M_K)^2$	4.98x10 ⁻⁸	8.51x10 ⁻⁸

$$z = (M_{ee} / M_{K})^{2}$$

MC generator

Decay properties

- Lower part of the spectrum at z < 0.08 (M_{ee}<140 MeV/c²) is fully dominated by Inner Bremsstrahlung (IB)
- z distribution is most sensitive to ChPT FF contributions

Experimentally clean signature

High z region chosen is clean of decays containing $\pi^0 \rightarrow e^+ e^- \gamma$ (Dalitz decay) in the final state $(M_{\pi 0} = 135 \text{ MeV/c}^2)$

Background suppressed by z cut:

Br(K[±] $\rightarrow \pi^{\pm} \pi^{0} (\pi^{0} \rightarrow e^{+} e^{-} \gamma))= 2.4 \times 10^{-3}$

 $Br(K^{\pm} \rightarrow \mu^{\pm} \nu_{\mu} \pi^{0} (\pi^{0} \rightarrow e^{+} e^{-} \gamma)) = 3.9 \text{ x } 10^{-4}$

Distributions from MC simulation at generator level – no selection criteria applied

Analysis results

- 1663 data events observed
- Background contamination of 3 %
- Signal acceptance $\sim 12-14\%$ (depends on z)
- Pure IB not matching to the observed z-distribution shape
- Shape matches the MC with ChPT FF contribution

Results

 $BR/dz \times 10^8$ Kaon flux measured with the decay $\mathbf{K}^{\pm} \rightarrow \pi^{\pm} \pi^{+} \pi^{-} (\mathbf{K}_{3\pi})$ same signal 2.5 NA48/2 preliminary topology (three-track event) Br (z>0.08) obtained summing over all bins (taking properly into account for 1.5 by-to-by acceptance variation) The error is dominated by statistical uncertainty 0.5 $Br(K^{\pm} \to \mu^{\pm} \nu_{\mu} e^{\pm} e^{\pm} | M_{ee} \ge 140 MeV/c^2)$ $z = (M_{\odot}/M)$ = $(7.84 \pm 0.21_{\text{stat}} \pm 0.08_{\text{syst}} \pm 0.06_{\text{ext}}) \times 10^{-8}$ 0.1 0.15 0.2 0.250.3

Previous measurements:

• $Br(M_{ee} \ge 140 MeV/c^2) = (12.3 \pm 3.2) \ 10^{-8}$ (Diamant-Berger et al. '76 Geneva-Saclay)

• $Br(M_{ee} \ge 145 MeV/c^2) = (7.06 \pm 0.31) \ 10^{-8} (Poblaguev et al. '02 BNL E865)$

Conclusion

- K₁₃ form factors measurement is performed by NA48/2 on the basis of 2004 run selected 4.28·10⁶ (K₁₃) and 2.91·10⁶ (K₁₃) events.
- Result is competitive with the other ones in K_{µ3} mode, and a smallest error in K_{e3} has been reached, that gives us also the most precise combined K_{µ3} result.
- For the first time both K^+ and $K^- K_{e3}$ decays were studied together.
- Model independent measurement of $\mathbf{K}^{\pm} \rightarrow \mu^{\pm} v_{\mu} \mathbf{e}^{+} \mathbf{e}^{-}$ decay performed using NA48/2 data: Br ($\mathbf{K}^{\pm} \rightarrow \mu^{\pm} v_{\mu} \mathbf{e}^{+} \mathbf{e}^{-} \mid \mathbf{M}_{ee} \geq (140 \text{MeV/c}^{2}) = (7.84 \pm 0.23) \times 10^{-8}$
- Background contamination of 3.2%
- Measurement is in agreement with predictions of Chiral Perturbation Theory

Events-weighting fit procedure

- Experimental Dalitz plot is corrected for the simulated background.
- For each fit iteration, the model Dalitz plot is filled in with an MC simulated reconstructed center-of-mass pion and lepton energies. Each event is weighted by

w = $\rho_0(E_{\pi}^{true}, E_{I}^{true}, FF_{fit}) / \rho_0(E_{\pi}^{true}, E_{I}^{true}, FF_{MC enerator})$,

where ρ_0 is the non-radiative Dalitz density formula.

• MINUIT package is searching for the FF_{fit} parameters minimizing the standard χ^2 value:

$$\chi^2 = \sum_{i,j} \frac{(D_{i,j} - MC_{i,j})^2}{(\delta D_{i,j})^2 + (\delta MC_{i,j})^2},$$

where *i*,*j* means the Dalits plot cell indices, $D_{i,j}$ is the background-corrected experimental data content of the cell, $MC_{i,j}$ is the weighted MC bin content, and $\delta D_{i,j}$, $\delta MC_{i,j}$ are the corresponding statistical errors.

At least 20 data events per cell are required in the fit area, so χ^2 works well.

2 - 5 October, 2017

B_{ell} distributions in a wide area

~ 3 σ range is relatively well simulated as well as the very far tail.

But the discrepance near ~5-10 is not described by the known background.

Sensitivity to the background variation at the very far tail (>20) is used to measure the Bgrelated systematic uncertainty.

It looks like a small wide component of the beam, that becomes negligible for $B_{ell} > 11$. For wider cuts final results are stable.

B_{ell} distributions with the modified MC beam (systematics)

This MC simplified modification is not used for the FF central values extraction (only for systematics estimate). So we need a wide radius cut to avoid the acceptance distortion, and also we need a vertex reconstruction, that is not too sensitive to the transverse general shift of the decay — it is a Neutral vertex rather than CDA.

2 - 5 October, 2017

Selection

Min bias **trigger**: 1 track and $E_{LKr} > 10 \text{ GeV}$ ((sevt->trigWord >> 11) & 1)

N of good clusters > 1 :

- LKr standard nonlinearity correction for Data clusters (user_lkrcalcor_SC)
- LKr small final nonlinearity correction for MC clusters, extracted from $\pi^+\pi^0\pi^0$ (see April 2007 talk of Di Lella and Madigozhin)
- LKr scale corrections from K_{e3} E/P (different for Data and MC, sub-permill precision)
- Cluster status <= 4
- Cluster energy >= 3 GeV
- Distance to dead cell >= 2 cm
- Radius at LKr >= 15 cm
- In standard LKr acceptance
- Distance to any in-time (within 10 ns) track impact point at LKr >= 15 cm
- Distance to any another in-time (within 5 ns) cluster >= 10 cm

N of good tracks > 0:

In Monte Carlo everithing is in-time

- Pe >= 5 GeV, P μ >= 10 GeV (muon case cut applied after identification)
- Track momenta α , β corrections both for data and MC
- If there is the associated LKr cluster, its cluster status <=4
- Track quality >= 0.6
- Distance to dead cell >= 2 cm
- Radius at every DCH(1,2,3,4) >= 15 cm
- Reject DCH tracks with 0 cm < X(DCH4) < 6 cm && Y(DCH4)>0 (inefficient band)
- $K_{\mu3}$ DCH track: for all 3 MUV planes $R_{MUV} > 30$ cm, $|X_{MUV}, Y_{MUV}| < 115$ cm.
- LKr impact point is in LKr acceptance

π^0 selection

- Check all the pairs of good in-time (within 5 ns) clusters
- Calculate π^0 time t_{π} (average of two γ ones) and reject the combination, if there is a good extra cluster in 5 nanoseconds around t_{π} (to suppress $\pi^+\pi^0\pi^0$ and showers).
- Make the projectivity correction for the experimental data and MC.
- Reject the pair, if the distance between the clusters is < 20 cm
- $E_{\pi 0} > 15 \text{ GeV}$ (for trigger efficiency: trigger E LKr > 10 GeV).
- Calculate Z_n from two γ , assuming π^0 mass
- -1600 cm < Z < 9000 cm
- DCH flunge gamma cut for the both γ

Track selection and identification

For each found good π^0 check all the good tracks:

- In-time with π^0 (within 10 ns)
- There is no extra good track within 8 ns around the track time (against showers).
- If 2.0 > E/P > 0.9, it is an electron (K_{e3})
- If E/P < 0.9 and there is a muon associated, it is a muon (K_{u3})

First iteration decay vertex position:

- $Z_{decay} = Z (\pi^0)$
- X_{decay} , Y_{decay} = impact point of reconstructed charged track on the transversal plane, defined by Z_{decay}

Blue field correction:

With the «first iteration vertex», we implement the Blue field correction, obtain corrected track slopes and recalculate vertex X,Y again.

Beam position correction:

We know the position of beam axis in space (it is always displaced slightly from the nominal Z axis). For the CMC tuning, these positions were measured for each run from $3\pi^{\pm}$ data many years ago.

We use these data to calculate all the relevant values with respect to the current run beam axis rather than with respect to nominal Z arrow. First of all, we calculate the vertex (x,y) with respect to the beam center X_b, Y_b at this Z_n . Vertex position cut (very wide):

SQRT($((X-a_X(Z))/\sigma_X(Z))^2 + ((Y-a_Y(Z))/\sigma_Y(Z))^2) < 11.0$

Here a_X , a_Y , σ_X and σ_Y are the functions of Z and represent the average position and width of the beam with respect to standard ($3\pi^{+-}$) beam position.

They are obtained by Gaussian fit (\pm 1.2 cm around maximum) for Z slices, separately for MC and Data, for X and Y and for positive and negative beams. Then these points are parametrised as functions of Z by polinomes of 5-th degree of Z.

Final stage of the selection

- $P_L(v)^2 > 0.0014 \text{ GeV}^2 \text{ for } K_{e3} \text{ only}$
- Quadratic equation for P_K is solved, if no solutions, the combination is taken with zero discriminant. With the above $P_L(v)^2$ requirement, such a cases are rare for K_{e3} .
- Average beam momentum P_b measured from $3\pi^{\pm}$ decays for each run is used to choose the best P_k solution (closest to P_b from two ones).
- -7.5 GeV/c $< (P_{K} P_{b}) < 7.5$ GeV/c
- For $K_{\mu3}$, the cut against $K^{\pm} \rightarrow \pi^{\pm}\pi^{0}$ with $\pi^{\pm} \rightarrow \mu^{\pm}\overline{\nu}$: m($\pi^{+}\pi^{0}$) < 0.47 GeV and m($\pi^{+}\pi^{0}$) < (0.6 — P_t(π^{0})) GeV;
- For $K_{\mu3}$, one more cut against $K^{\pm} \rightarrow \pi^{\pm}\pi^{0}$ with $\pi^{\pm} \rightarrow \mu^{\pm}\overline{\nu}$: $m(\mu^{\pm}\overline{\nu}) > 0.18 \text{ GeV};$
- For $K_{\mu3}$ only: a cut against $\pi^{\pm}\pi^{0}\pi^{0}$: $(P_2 P_1) < 60 \text{ GeV}$ <=> in terms of P_K equation discriminant squared $d = ((P_2 - P_1)/2)^2$: $d < 900 \text{ GeV}^2$;
- For K_{e3} , the v transversal momentum with respect to beam axis must be $P_t \ge 0.03 \text{ GeV}$: a cut against $K^{\pm} \rightarrow \pi^{\pm}\pi^0$ with π^{\pm} misidentified as *e* (when E/P > 0.9).

In every event, separately for K_{e3} and $K_{\mu3}$, the combination with the minimum $\Delta P = |P_{\kappa} - P_{b}|$ is choosen as the best candidate.

A complex nature of $(P_{L}^{v})^{2}$ - dependent K_{e3} systematic effect

1) Mismeasurent of decay transversal coordinates happens (in the neutral vertex case it also involves the LKr clusters mismeasurement).

2) As a consequense, a small mismeasurement of transversal $(P_t^{v})^2$

3) As a consequense, a small mismeasurement of $(P_L^v)^2 = (E^v)^2 - (P_t^v)^2$

4) As a consequence, a small mismeasurement of $D = ((P_1^k - P_2^k)/2)^2$

5) When D itself is small or negative, even small D mismeasurement is relatively not small.

6) Distorted D changes in a different way the probability of the «best» P^{K} choise (we take the closest to average true $\langle P^{K} \rangle$) for different vertex definitions and for MC and Data, depending on true P^{K} spectrum. The wrong choise may also depend on the correlations between true P^{K} and the transversal decay coordinates.

7) Mistake in P^{K} choise from two options may be not small, it is of the order of spectrum width (few GeV), and it leads to relatively big mismeasurement of Dalits plot variables, especially for E_{π}^{*} .

- Correct simulation of this effect seems to be difficult, we have only a simple beam correction for the scattered component.
- But we know, where the problem is concentrated (small (P^v_L)²), so we just cut the problematic region.
 - 2 5 October, 2017

For K_{u3} only: a cut against $\pi^{\pm}\pi^{0}\pi^{0}$: $(P_2 - P_1) < 60 \text{ GeV} <=> D = ((P_2 - P_1)/2)^2 < 900 \text{ GeV}^2$

Equally normalized distributions of signal and background events are shown in order to check that the cut is doing its work in both cases.

But the absolute K_{e3} background level is much smaller than for $K_{\mu3}$. So we don't use this cut for K_{e3} and save some experimental statistics. For K_{e3} , the v transversal momentum with respect to beam axis must be $P_t \ge 0.03$ GeV.

It is a cut against $K^{\pm} \rightarrow \pi^{\pm}\pi^{0}$ with π^{\pm} misidentified as *e* (when E/P > 0.9).

Cuts for K ____ against the background from K $^{\scriptscriptstyle\pm} \to \pi^{\scriptscriptstyle\pm}\pi^{\scriptscriptstyle 0}$ with $\pi^{\scriptscriptstyle\pm} \to \ \mu^{\scriptscriptstyle\pm}\overline{\nu}$

 $m(\pi^{+}\pi^{0}) < 0.47 \text{ GeV/c}^{2}$ and $m(\pi^{+}\pi^{0}) < (0.6 - P_{t}(\pi^{0})) \text{ GeV/c}^{2}$

 $m(\mu^{\pm}\overline{\nu}) > 0.18 \text{ GeV/c}^2$ (to exclude π^+ mass region)

$$K_{e3}$$
 requirement: $P_{L}(v)^{2} > 0.0014 \text{ GeV}^{2}$

(P_L^v)² normalized distributions (Data and MC with background)

2 - 5 October, 2017

Neutral Z normalized distributions comparison

Residual discrepance (~1%) is taken into account as a contribution to systematic uncertainty = variation of final result due to the change of geometrical acceptance by the factor of 1.002, that corrects the K_{a} differences.

Experimental systematics

Contribution	Approach to the uncertainty calculation
Beam scattering	Effect of the additional beam fraction imitating the beam scattering
LKr nonlinearity	Effect of the final nonlinearity correction
LKr scale	Effect of the LKr scale shift allowed by Data/MC electron E/P peak
Background	Effect of the background contribution change within B _{ell} distribution tails
	Data/MC agreement. It absorbs the PDG branching fraction errors
Trigger efficiency	Effect of the measured quadratically smoothed trigger efficiency (~100%)
Accidentals	Effect of the time windows doubling for clusters and tracks acceptance
Acceptance	Effect of small transversal detector cuts increasing for MC, that (over) corrects Z distributions
P_{K} average	Effect of beam <p<sub>K> possible mismeasurement</p<sub>
P _K spectra	Effect of the MC true P_{K} spectra variation within the agreement of measured MC/Data P_{K} spectra
Neutrino P cut	Effect of the artificial $(P_L^{\nu})^2$ resolution variation within $(P_L^{\nu})^2$ peak sharpness MC/Data agreement
Binning	Effect of the bins doubling for the both Dalitz plot dimensions
Resolution	Difference between the main events weighting approach and the acceptance correction technique that is more sensitive to resolution

External contributions to systematic uncertainty.

Contribution	Approach to the uncertainty calculation
Radiative correction precision	Effect of the theoretical uncertainty in the radiative Dalitz plot corrections in terms of one-dimensional slopes.
Parameterization for Dispersive fits	100 fits with the independently sampled 5 external parameters known with a given uncertainty.

The full analysis is performed and form factor parameters are extracted:

- For K_{e3}
- For $K_{\mu 3}$
- For the combined $K_{_{I3}}$ result: A joint fits are done by minimizing of the sum $\chi^2(K_{_{e3}}) + \chi^2(K_{_{\mu3}})$ with a common set of fit parameters. This is repeated also for each of the systematic uncertainty studies.

LKr Nonlinearity

Use 2004 $\pi^0 \pi^0 \pi^{+-}$ data (done for cusp analysis):

22 < E (π^0_1) < 26 GeV E (π^0_2) < E (π^0_1) E $(\gamma)^{max}$ < 0.55 E (π^0) for both π^0

Final correction for MC:

E: cluster energy in GeV

 $f=P_0+P_1E+P_2E^2+P_3E^3$ if(f > 1) E= E/f 100% of the final correction effect is taken as the nonlinearity-related uncertainty.

ICPPA'2017, Moscow, Russia

2 - 5 October, 2017

Blue field correction:

With the «first iteration vertex», we implement the Blue field correction, obtain corrected track slopes and recalculate vertex X,Y again.

Beam position correction:

We know the position of beam axis in space (it is always displaced slightly from the nominal Z axis). For the CMC tuning, these positions were measured for each run from $3\pi^{\pm}$ data many years ago.

We use these data to calculate all the relevant values with respect to the current run beam axis rather than with respect to nominal Z arrow. First of all, we calculate the vertex (x,y) with respect to the beam center X_b, Y_b at this Z_n .

Vertex position cut (very wide):

SQRT($((X-a_X(Z))/\sigma_X(Z))^2 + ((Y-a_Y(Z))/\sigma_Y(Z))^2) < 11.0$

Here a_X , a_Y , σ_X and σ_Y are the functions of Z and represent the average position and width of the beam with respect to standard $(3\pi^{+-})$ beam position.

They are obtained by Gaussian fit (\pm 1.2 cm around maximum) for Z slices, separately for MC and Data, for X and Y and for positive and negative beams. Then these points are parametrised as functions of Z by polinomes of 5-th degree of Z.

2 - 5 October, 2017 ICPPA'2017, Moscow, Russia

Results for K_{e3} and $K_{\mu 3}$

	609.4/687		391.2/384		
	$\lambda'_{+}(K_{e3})$	$\lambda_{+}''(K_{e3})$	$\lambda'_+(K_{\mu3})$	$\lambda_{+}''(K_{\mu3})$	$\lambda_0(K_{\mu3})$
Central values	23.52	1.60	23.32	2.14	14.33
Stat. error	0.78	0.30	3.08	1.06	1.11
Beam scattering	0.90	0.32	0.25	0.12	0.58
LKr nonlinearity	0.28	0.01	2.85	0.73	0.93
LKr scale	0.68	0.12	0.83	0.18	0.14
Background	0.07	0.04	0.26	0.05	0.04
Trigger	0.27	0.13	0.67	0.23	0.12
Accidentals	0.24	0.08	0.01	0.00	0.01
Acceptance	0.28	0.08	0.85	0.23	0.25
Pk average	0.06	0.01	0.20	0.07	0.32
Pk spectra	0.00	0.00	0.12	0.04	0.00
Neutrino P cut	0.18	0.04	0.00	0.00	0.00
Binning	0.05	0.00	0.11	0.05	0.15
Resolution	0.01	0.02	1.44	0.46	0.39
Radiative	0.20	0.01	0.15	0.03	0.06
Syst. error	1.29	0.39	3.50	0.96	1.25
Total error	1.51	0.49	4.67	1.43	1.67
Correlation			Correlation		
-0.927				$\lambda_{+}''(K_{\mu3})$	$\lambda_0(K_{\mu3})$
ICPPA'2017, Moscow, Russia			$\lambda'_+(K_{\mu3})$	-0.969	0.851
	$\lambda_{+}''(K_{\mu3})$		-0.810		

 $\chi^2/NDF(K_{e3})$:

 $\chi^2/NDF(K_{\mu 3})$:

Quadratic parameterization (in units of 10⁻³)

2 - 5 October, 2017

35

			$\chi^2/NDF(K_{e^3})$:		$\chi^2/\text{NDF}(K_{\mu^3})$:		
χ^2/NDF	$\chi^2/\text{NDF}(K_{e3})$:		F(K _{µ3}):	609.1/688		385.8/385	
609.3	/688	388.0/385			$\Lambda_+(K_{e3})$	$\Lambda_+(K_{\mu3})$	$ln[C](K_{\mu3})$
	$m_V(K_{e3})$	$m_V(K_{\mu 3})$	$m_S(K_{\mu 3})$	Central values	22.54	23.55	186.68
Central values	896.8	879.1	1196.4	Stat. error	0.20	0.50	5.12
Stat. error	3.4	8.1	18.1	Beam scattering	0.09	0.48	7.05
Beam scattering	1.4	7.6	22.6	LKr nonlinearity	0.20	0.60	2.08
LKr nonlinearity	3.5	9.6	6.2	LKr scale	0.31	0.26	0.50
LKr scale	5.3	4.1	2.2	Background	0.02	0.10	0.15
Background	0.4	1.5	0.7	Trigger	0.04	0.01	3.62
Trigger	0.8	0.1	12.7	Accidentals	0.03	0.00	0.09
Accidentals	0.5	0.0	0.3	Acceptance	0.08	0.16	0.35
Acceptance	1.3	2.4	1.0	Pk average	0.02	0.01	2.62
Pk average	0.3	0.2	9.0	Pk spectra	0.00	0.00	0.46
Pk spectra	0.1	0.0	1.6	Neutrino P cut	0.07	0.00	0.00
Neutrino P cut	1.2	0.0	0.0	Binning	0.04	0.03	1.24
Binning	0.7	0.5	4.5	Resolution	0.03	0.10	0.50
Resolution	0.6	2.2	1.0	Radiative	0.18	0.05	0.49
Radiative	3.2	0.8	1.6	Parameterization	0.44	0.49	2.95
Syst. error	7.6	13.5	28.8	Syst. error	0.62	0.97	9.23
Total error	8.3	15.7	34.0	Total error	0.65	1.10	10.55
			•				

2 - 5 October, 2017

Correlation 0.408

Normalization channel

 $K^{\pm} \rightarrow \pi^{\pm} \pi^{+} \pi^{-} (K3\pi)$ same signal topology (three-track event)

Huge statistics: O(10⁹) $K_{3\pi}$ decays

 $\begin{array}{l} M(\pi^{\pm} \ \pi^{+} \ \pi^{-} \) = (493.65 \pm 0.01) MeV/c^{2} \\ \sigma = 1.7 \ MeV/c^{2} \\ Acceptance \ (24.04 \pm 0.01)\% \end{array}$

Total number of kaon decays $(1.56 \pm 0.01) \ge 10^{11}$

Error Budget

Uncertainty type	$\delta BR/BR[x10^2]$
Data statistics	2.54
Normalization channel statistics	0.02
Total statistical	2.54
Rad. corr.	0.70
Background statistics	0.62
Trigger effciency	0.54
Background systematic	0.30
Muon ID effciency	0.13
Acc signal statistics	0.12
Electron ID uncertainty	0.04
Acc normalization statistics	0.03
Total systematic	1.15
External uncertainty (Br $K_{3\pi}$)	0.72
Total uncertainty	2.88