The 3rd International Conference on Particle Physics and Astrophysics

The DAMPE experiment: 2 year in orbit (almost)

Fabio Gargano – INFN Bari on behalf the DAMPE collaboration

The physics goals

• High energy particle detection in space

- Study of the cosmic **electron** and **photon** spectra
- Study of cosmic ray **protons** and **nuclei**:
 - spectrum and composition
- High energy gamma-ray astronomy
- Search for **dark matter** signatures in lepton spectra
- Exotica and "unexpected", e.g. GW e.m. counterpart in the FoV (1sr)

Detection of $5 \text{ GeV} - 10 \text{ TeV e/}\gamma$ 50 GeV - 100 TeV protons and nucleiExcellent energy resolution (<1.5%@100GeV e/ γ ; < 40% @800GeV p) Very good angular resolution (<0.2° @ 100GeV γ)

The collaboration

• CHINA

- Purple Mountain Observatory, CAS, Nanjing <u>Prof. Jin Chang</u>
- Institute of High Energy Physics, CAS, Beijing
- National Space Science Center, CAS, Beijing
- University of Science and Technology of China, Hefei
- Institute of Modern Physics, CAS, Lanzhou

• ITALY

- INFN Perugia and University of Perugia
- INFN Bari and University of Bari
- INFN Lecce and University of Salento
- SWITZERLAND
 - University of Geneva

The detector

75k readout channels + temperature sensors

PSD: double layers of scintillating strip detector acting as ACD STK: 6 tracking double layers + 3 mm tungsten plates. Used for particle track and photon conversion

BGO: the calorimeter made of 308 BGO bars in hodoscopic arrangement (~32 radiation lengths). Performs both energy measurements and trigger

NUD: it's complementary to the BGO by measuring the thermal neutron shower activity. Made up of boron-doped plastic scintillators

Comparison DAMPE AMS-02 and FERMI

	DAMPE	AMS-02	Fermi LAT
e/γ Energy res.@100 GeV (%)	<1.5	3	10
e/γ Angular res.@100 GeV (deg.)	<0.2	0.3	0.1
e/p discrimination	>10 ⁵	10 ⁵ - 10 ⁶	10 ³
Calorimeter thickness (X ₀)	32	17	8.6
Geometrical accep. (m ² sr)	0.3	0.09	1

3 October 2017

The launch: Dec 17th 2015, 0:12 UTC

Operations 24h/day, 365d/year, since the launch

- Acquisition rate up to 200Hz (50 Hz for High Energy Trigger == trigger for physics analysis)
- Data are collected 4 times per day, each time the DAMPE satellite is passing over Chinese ground stations
- 15 GB/day transmitted to ground
 - Raw Data (ROOT format 8GB) + Slow Control + Orbit Information
- 85 GB/day reconstructed data (ROOT format)
- 100 GB/day (35 TB/year) in total

3 October 2017

Some on-orbit performance plots

On orbit STK alignment using "mips" (i.e. not showering particle). The alignment (done every two weeks) allows us to achieve a spatial resolution better than 40µm on central STK planes

The "mip" (i.e. not showering particles) peak shift with latitude due to the geomagnetic cut-off.

On-orbit absolute energy calibration

- Geomagnetic cut-off on cosmic ray electron spectrum provide a good spectral feature for absolute energy calibration
- Measure low energy CRE flux with 1<L<1.14 in the energy range 8GeV < E < 100GeV
- We made a direct comparison between flight data and MC (with back tracing in Earth magnetic field IGRF12)

By comparing geomagnetic cut-off on cosmic ray electron and positron fluxes measured from data and MC back tracing, we found DAMPE's absolute energy scale differ from expected by 1.25%

Electrons: identification

Electrons: performances

6-2October 2017, Pages 95, Astroparticle Physics Volume

ne DAMFE experiment: 2 year in oron - ICFFA 2

All-electron spectrum

- Measure the all-electron flux up to about 10TeV
- Measure with high accuracy the sub-TeV region and the possible cut-off around 1 TeV
- Detect structures in the spectrum due to nearby sources and/or DM induced excesses
- Detect anisotropies at high energy

Protons and nuclei – Beam test

12000

10000

8000

6000

4000

2000

Counts

PSD

С

6

N

Identifying protons and nuclei with $\ensuremath{\mathsf{PSD}}$ and $\ensuremath{\mathsf{STK}}$

Charge measurement is done with **STK** up to Oxigen and with PSD from protons up to Iron Charge resolution is Z dependent and ranges from 0.2 to 0.4

Z (Charge Estimation of PSD)

12

Argon beam 40 GeV/n

Ne

10

Na

0

Mg

Al

Si

14

16

Ar

18

Protons and nuclei – Flight data

Identifying protons and nuclei with PSD and STK

Protons and nuclei – First spectra

- template fits to account for He background
- spectral hardening at E>200 GeV

- well in agreement with previous experiments
- currently extending analysis to higher energies

Photons: Selection

- The main background sources are protons and electrons
 - Protons: $10^5 @ E > 100 GeV$
 - Electrons: $10^3 @ E > 100 GeV$
- Protons
 - Are mainly rejected using the shower profile and the onboard trigger
- Electrons
 - Are mainly rejected using the PSD and $1^{\rm st}$ layer of STK
 - Main problem is back scattering at high energy

Photons: Selection

Random Forest + Convolutional Neural Network are used for PID

3 October 2017

.uargano - 1

17

Photons: Selection

• Acceptance after the selection criteria applied to reject protons and electrons

Other PID algorithm are under study to further decrease the electrons contamination at a level below the Extra Galactic Background emission

Photons: First results on timing Pulsars and variability

PE experiment: 2 year in orbit - ICPPA 2017

20

Summary

• The detector

- Large geometric factor (0.3 m^2 sr for electrons)
- Precision Si-W tracker (40µm spatial resolution, 0.15° angular resolution)
- + Thick calorimeter (32 X_0 , σ_{E}/E 1% above 100 GeV for e/y , ~40% for hadrons)
- "Multiple" charge measurements (20%-40% energy resolution)
- e/p rejection power $> 10^5$ (topology alone, plus neutron detector)

• Launch and performances

- Successful launch on Dec 17, 2015
- On orbit operation steady and with high efficiencies
- Absolute energy calibration by using the geomagnetic cut-off
- Absolute pointing cross check by use of the photon map

• Physics goals

- Study of the cosmic electron and photon spectra
- Study of electron anisotropy and nearby sources contribution
- Study of cosmic ray protons and nuclei: spectrum and composition
- Precise measurement of CR discrepant hardenings and spectral indexes
 - Preliminary results well in agreement with other experiments
- High energy gamma ray astronomy
- Search for dark matter signatures in lepton spectra
- The "unexpected": GW electromagnetic follow up in FoV and in the observable energy range

