

Search for heavy neutrino in leptonic decays of K⁺

Alexander Sadovsky (NRC "Kurchatov Institute" – IHEP)

on behalf of the OKA collaboration

OKA setup Selection criteria Background processes Upper limit estimate Comparison with other experiments

ICPPA-2017, 04 October 2017, MEPhI, Moscow, Russia

OKA setup at the U-70 accelerator complex NRC "Kurchatov Institute" – IHEP, Protvino

OKA setup (run-14 / 2012)

OKA setup (run-14 / 2012)

Kaons/spill at OKA setup~ $250 \cdot 10^3$ Main trigger: $(S_1 \bullet S_2 \bullet S_3 \bullet S_4 \bullet C_1 \bullet \overline{C}_2 \bullet \overline{S}_{bk1} \bullet \overline{S}_{bk2} \bullet [\Sigma_{GAMS} > Mip]) \sim 2.3 \cdot 10^9$ triggers written for 17.7GeV/c $\frac{1}{2}$ time dedicated to Cu target (2mm in the end of decay volume).

triggers used

- Two prescaled $\{\frac{1}{10}, (S_1 \bullet S_2 \bullet S_3 \bullet S_4 \bullet C_1 \bullet \overline{C}_2 \bullet \overline{S}_{bk1} \bullet \overline{S}_{bk2})$ kaon decay, additionally with,
 - $\{\frac{1}{4}\}(S_1 \bullet S_2 \bullet S_3 \bullet S_4 \bullet C_1 \bullet C_2 \bullet S_{bk1} \bullet S_{bk2} \bullet \mu C)$ kaon decay with muon in μC

 \approx 43% from 504 mln reconstructed single track events

Topology for K $\rightarrow \mu \nu$ and background processes ⁵

Offline selections: $K \rightarrow \mu \nu$

1) Events with single track before DV of proper momentum 17.7 GeV/c and single track after DV with p<16.4 GeV/c and w/o additional track segments after SP40 magnet.

- 2) Secondary track matches to muon-type cluster in GAMS and GDA
- 3) Good vertex reconstruction $\frac{2}{2}$
- Z-vertex 2σ away from the DV entrance window and from the Cu-target

5) Guard system + BGD hermetic cuts (no tracks nor gammas allowed)6) Energy deposition corresponds to single muon hit in both GAMS and GDA

Reduction in statistics (experiment)

secondary track: N>15, $\chi^2/ndf \leq 4$

for further analysis

EXP vs. MC comparison + motivation to introduce kinematic limits

EXP data and MC comparison – selections (C) and (K) ⁹

Each MC-channel is normalized to the main one $K \rightarrow \mu \nu$ (known branchings are used).

Squared missing mass distribution for all pronounced channels obtained with Monte-Carlo and their sum (red) superimposed with EXP data (gray). Normalization is done to EXP data.

Three approaches for signal extraction

10

Upper limit estimates

Best fit MC to EXP data \rightarrow

- \rightarrow Obtained residual = for signal search \rightarrow
- → For each bin at m_v^2 distribution (in the window of interest) →
- \rightarrow Obtained number of events (with error) \rightarrow
- \rightarrow Upper limit on number of events @ CL90% \rightarrow
- → Using efficiency (from MC) & full number of Km2 (from EXP)→
- → Upper limit on Br. @CL90%

Results on coupling strength

12

Thank you for your attention