

Forward-backward correlations in Pb–Pb collisions at √s_{NN}=2.76 and 5.02 TeV with ALICE

Igor Altsybeev St.Petersburg State University for the ALICE Collaboration

This work is supported by the Russian Science Foundation, grant 17-72-20045.

ICPPA-2017 September 19, 2017

What are the sources of long-range correlations?

Long-range correlations (LRC) – can be explored with correlations between particles separated by pseudorapidity gap.

Typically: $|\Delta \eta| > 1.0 \rightarrow$ suppress contribution from resonances and (mini) jets

- LRC can be created predominantly at early stages of the collision
 - geometry, interactions between strings
- can be modified by medium and final state interactions
 - hydrodynamic expansion
 - energy loss in medium
 - conservation laws

Pb-Pb, p-Pb and pp collisions are under investigation at the LHC.

ALICE experiment

Inner Tracking System (ITS) tracking + triggering

Time Projection Chamber (TPC) tracking

V0 detector

Two forward scintillator arrays (-3.7<η<-1.7, 2.8<η<5.1) *centrality:* particles at forward rapidity

Zero-Degree Calorimeters

centrality: spectators

- ACORDE Strip Drift) Pixel ITS FMD EMCAL T0 & V0 V0 TRD T0 HMPID TRACKING FMD CHAMBERS PMD ZDC MUON 116m from I.P./ FILTER V0 T0 TRIGGER TPC CHAMBERS/ ZDC 116m from I.P. TOF DIPOLE MAGNET PHOS ABSORBER
- Number of min. bias Pb-Pb events: ≈11×10⁶@2.76 TeV, ≈50×10⁶@5.02 TeV
- Tracks: -0.8<η<0.8, 0.2<p_T<2.0 GeV/c</p>
- Centrality estimators: V0, ZDC

Forward-Backward correlations: the observables

Event-by-event calculation: choose some **F** and **B** quantities from separated η windows and assess correlation strength:

Forward-Backward correlations: the observables

Event-by-event calculation: choose some **F** and **B** quantities from separated η windows and assess correlation strength:

Forward-Backward correlations: the observables

Event-by-event calculation: choose some **F** and **B** quantities from separated η windows and assess correlation strength:

Strong dependence on centrality class width (volume fluctuations)

FB **multiplicity** correlations **in Pb-Pb**: centrality dependence

- Strong dependence on centrality class width (volume fluctuations)
- Dramatic dependence on centrality estimator (acceptance and resolution)

Details of centrality selection are crucial for FB **multiplicity** correlation studies in A-A.

 STAR claims "growth with centrality" – this should be taken with care. Phys.Rev.Lett.103:172301, 2009

Igor Altsybeev, Forward-backward correlations, ICPPA, 3.10.2017

FB correlations between <u>intensive</u> observables:

take event-mean transverse momentum

FB correlations between <u>intensive</u> observables:

take event-mean transverse momentum

FB correlations between <u>intensive</u> observables:

take event-mean transverse momentum

FB mean-p_T correlations vs centrality

-0.8 -0.6 -0.4 -0.2

Backward

0

Forward

• Mean- p_{T} is an *intensive* observable \rightarrow robust against volume fluctuations

Igor Altsybeev, Forward-backward correlations, ICPPA, 3.10.2017

FB mean-p_T correlations vs centrality

FB mean-p_T correlations for several η-gaps

- at all η gaps, same shape of the centrality dependence
- higher values at η gap=0 due to short-range contributions

FB mean-p_T correlations at 2.76 and 5.02 TeV

Correlation strength:

- rises from peripheral to mid-central
- drops towards central collisions.

fluctuations of the density in the fireball.

MC realization: arXiv:1308.6618

What is important for models to capture: pattern of mean- p_T correlations vs centrality.

FB mean-p_T correlations: Pb Pb what can we learn from comparison with models?

- HIJING: weak correlations, no dependence on centrality
- AMPT: generally reproduces the shapes, not the magnitude in detail
 - Rescattering off \rightarrow rise of b_{corr}
 - String melting off → large "jump" of b_{corr}

Role of quark coalescence?..

- HIJING: weak correlations, no dependence on centrality
- AMPT: generally reproduces the shapes, not the magnitude in detail
- THERMINATOR: freeze-out hypersurface, Cooper-Frye + decays
 - \rightarrow no mean-p_T correlations due to absence of e-by-e fluctuations
- String fusion → qualitatively describes behaviour with centrality

Mean- p_T correlations provide higher sensitivity to the properties of the initial state and evolution of the medium created in A-A collisions.

Summary

Forward-backward **multiplicity** correlations:

♦ Correlation strength heavily depends on centrality selection (type of estimator, class width)
→ any physical conclusions should be made very carefully.

Forward-backward **mean-***p*_T correlations:

 \diamond Measured for the first time in ALICE in Pb-Pb collisions at v_{NN} =2.76 and 5.02 TeV.

 \diamond Evolution with centrality: described by some models qualitatively, but not quantitatively.

 \diamond Robust against volume fluctuations and thus the centrality determination methods

 \rightarrow higher sensitivity to the properties of the initial state and medium evolution.

Summary

Forward-backward **multiplicity** correlations:

♦ Correlation strength heavily depends on centrality selection (type of estimator, class width)
→ any physical conclusions should be made very carefully.

Forward-backward **mean-***p*_T correlations:

♦ Measured for the first time in ALICE in Pb-Pb collisions at Vs_{NN} =2.76 and 5.02 TeV. ♦ Evolution with centrality: described by some models qualitatively, but not quantitatively.

 \diamond Robust against volume fluctuations and thus the centrality determination methods

 \rightarrow higher sensitivity to the properties of the initial state and medium evolution.

Thank you for your attention!

Backup

FB mean-p_T correlations for several η-gaps

at all η gaps, same shape of the centrality dependence higher values at η gap=0 due to SR contributions

Peripheral events: steeper rise for smaller η gaps

FB **mean-***p*_T correlations *vs* N_{ch} density: compare with AMPT

