N-N, PT-N and PT-PT fluctuations in nucleus-nucleus collisions at the NA61/SHINE experiment

Evgeny Andronov for the NA61/SHINE Collaboration

Saint Petersburg State University, LUHEP

2 -5 October, 2017

3rd ICPPA MEPhl, Moscow, Russia

Motivation of the NA61/SHINE strong interaction programme

- Search for the critical point
- Study of properties of the onset of deconfinement

Motivation of the NA61/SHINE strong interaction programme

- Search for the critical point
- Study of properties of the onset of deconfinement

Comprehensive scan with light and intermediate mass nuclei in beam momentum range 13A-150A GeV/c

Motivation of the NA61/SHINE strong interaction programme

- Search for the critical point
- Study of properties of the onset of deconfinement

Comprehensive scan with light and intermediate mass nuclei in beam momentum range $13A-150A~{\rm GeV}/c$

Data taking schedule:

taken data (green)
approved (red)
proposed extension (gray)

beam momentum [A Gev/c]

NA61/SHINE detector

NA61/SHINE in virtual reality: http://shine3d.web.cern.ch/shine3d/

- Located at CERN SPS
- ► Large acceptance hadron spectrometer coverage of the full forward hemisphere, down to $p_T = 0 \text{ GeV}/c$
 - Performs measurements on hadron production in h+p, h+A, A+A at 13A -150(8)A GeV/c
- Event selection in A+A collisions by measurements of forward energy with PSD
- Recent upgrades: vertex detector (open charm measurements), FTPC-1/2/3

Intensive fluctuation measure

A ratio of two extensive quantities ($\sim W$ - number of sources) is an intensive measure

$$\omega[N] = \frac{\langle N^2 \rangle - \langle N \rangle^2}{\langle N \rangle}$$

- Independent of *W* in the Wounded Nucleon Model
- $\omega[N] = 1$ for the Poisson distribution
- $\omega[N] = 0$ in the absence of fluctuations
- should be sensitive to critical fluctuations (e.g. in classical van der Waals gas within GCE formulation)
- \bullet CP signal may be shadowed by volume fluctuations $\omega[W]$
- no traces of CP are seen in data at the moment (see next talk by A. Seryakov)

Vovchenko, et al., JPA 48: 305001

Strongly intensive fluctuation measures

Baseline of search for critical behaviour: quantities with trivial properties in the reference models (e.g. WNM or IB-GCE)

$$\begin{split} \Delta[P_T,N] &= \frac{1}{\omega[\rho_T]\langle N\rangle} \left(\langle N\rangle \omega[P_T] - \langle P_T\rangle \omega[N] \right) \\ \Sigma[P_T,N] &= \frac{1}{\omega[\rho_T]\langle N\rangle} \left(\langle N\rangle \omega[P_T] + \langle P_T\rangle \omega[N] - 2cov(P_T,N) \right) \\ \text{where } P_T &= \sum_{i=1}^N p_{Ti} \end{split}$$

N - multiplicity of charged hadrons in an experimental acceptance $\omega[p_T]$ - scaled variance of inclusive p_T distribution

- ullet Independent of $\langle W
 angle$ and $\omega[W]$ in the Wounded Nucleon Model
- $\Delta[P_T, N] = \Sigma[P_T, N] = 1$ for the independent particle production model
- $\Delta[P_T,N]=\Sigma[P_T,N]=1$ for the ideal Boltzmann gas in both Grand Canonical Ensemble and Canonical Ensemble formulations
- $\Delta[P_T, N] = \Sigma[P_T, N] = 0$ in the absence of fluctuations

Gorenstein, Gazdzicki, PRC 84:014904

Gorenstein, et al., PRC 88 2:024907

Strongly intensive fluctuation measures

Sensitivity to critical point

Analysis of strongly intensive fluctuation measures is expected to give more insight into the critical point location

 $\Sigma[E^*,N]$ and $\Delta[E^*,N]$ for nucleon system with van der Waals EOS in GCE formulation in vicinity of critical point, E^* - excitation energy

$\Delta, \Sigma[P_T, N]$: energy vs. system size scan

Inelastic p+p vs. 0-5% $^7Be+^9Be$ vs. 0-5% $^{40}Ar+^{45}Sc$

Systematic uncertainties due to experimental biases are under investigation (estimated to be smaller than 5%).

They are largely correlated between points for a given colliding system.

No prominent structures which could be related to the critical point are visible.

$\Delta, \Sigma[P_T, N]$: energy vs. system size scan Inelastic p+p vs. 0-5% 7 Be+ 9 Be vs. 0-5% 40 Ar+ 45 Sc

$$\begin{split} & \Delta[\textit{P}_{\textit{T}},\textit{N}] < 1 \\ & \Sigma[\textit{P}_{\textit{T}},\textit{N}] \geq 1 \end{split}$$

Explanations?

- Bose-Einstein statistics of pion gas
- negative $M(p_T)$ vs. N correlation leads to the same inequalities.

Gorenstein, Grebieszkow, PRC **89**:034903

No prominent structures which could be related to the critical point are visible.

Analysis extension: choice of phase-space

 $^{7}\text{Be} + ^{9}\text{Be}$ at 150A GeV/c

Sketch of psedorapidity (lab) spectrum of charged hadrons with proposed windows

9 intervals considered:

from
$$\eta^{\mathit{lab}} \in (\text{4.6}; \text{5.2})$$
 up to $\eta^{\mathit{lab}} \in (\text{3}; \text{5.2})$

The lower cut: poor azimuthal angle acceptance and stronger electron contamination at backward rapidities. The upper cut: to reduce effects of spectators.

Rapidity width dependence studies will allow to probe different baryochemical potentials $(\frac{\overline{p}}{p}=e^{-(2\mu_B)/T})$ - extension of the phase diagram scan!

Rapidity spectra of p and \overline{p} in inelastic p+p interactions at SPS energies

 $\frac{p}{p}$ changes significantly with rapidity

NA61, arXiv:1705.02467 [nucl-ex]

$\Delta[P_T, N]$: pseudorapidity width dependence $^7\text{Be} + ^9\text{Be}$ at 150A GeV/c

To estimate magnitude of experimental biases differences between pure and reconstructed Monte Carlo simulations were studied

This difference was estimated to be less than 5% for all data points

EPOS1.99 - Werner, et al., PRC 74:044902

Corrections are not performed

$\Delta[P_T, N]$: pseudorapidity width dependence $^7\text{Be} + ^9\text{Be}$ at 150*A* GeV/*c*

 $\Delta[P_T,N] < 1$ and is monotonically $\eta^{\frac{2}{\eta}lab}$ decreasing with the width of the pseudorapidity interval

Data are in disagreement with the non-trivial dependence from the FPOS1.99 model

Energy dependence in full NA61 acceptance

NA61, EPJC **76** 11: 635

Huge discrepancy with models for p+p interactions for full acceptance as well!

$\Sigma[P_T, N]$: pseudorapidity width dependence $^7\text{Be} + ^9\text{Be}$ at 150A GeV/c

 $\Sigma[P_T,N]>1$ and is monotonically increasing with the width of the pseudorapidity interval

 $\Sigma[P_T,N]$ approaches 1 for small width of the pseudorapidity interval (close to Poisson limit)

Good description of this dependence by the EPOS1.99 model

Forward-backward correlations

Causality requires appearance of long-range pseudorapidity correlations at early stages of evolution. Long-range correlations originate from fluctuations in the number of particle sources (many other effects like jets, flow, resonance decays, etc may affect these correlations).

Dumitru, et al., NPA 810: 91

Strength of correlations is quantified by the correlation coefficient:

$$b(B,F) = \frac{\langle BF \rangle - \langle B \rangle \langle F \rangle}{\langle F^2 \rangle - \langle F \rangle^2}$$

B – an observable in "backward" η window (e.g. N_B) F – an observable in "forward" η window (e.g. N_F)

Sensitivity to the number of sources makes correlation coefficient to be not strongly intensive, i.e. to be centrality dependent. STAR, PRL 103: 172301

I. Altsybeev, ICPPA2017

Strongly intensive fluctuation measures: two windows case

For extensive observables in two separated pseudorapidity intervals F and B one can introduce new strongly intensive quantities:

► N_F, N_B fluctuations Andronov, TMPh 185 1: 1383

$$\Sigma\left[N_{F},N_{B}\right] = \frac{\langle N_{B}\rangle\omega\left[N_{F}\right] + \langle N_{F}\rangle\omega\left[N_{B}\right] - 2cov\left(N_{F},N_{B}\right)}{\langle N_{B}\rangle + \langle N_{F}\rangle}$$

Similar expressions can be given for

- \triangleright N_F , P_{TB} fluctuations
- \triangleright P_{TF} , P_{TR} fluctuations

Sketch of psedorapidity (lab) spectrum of charged hadrons with proposed windows

7 pairs of intervals considered:

$$\eta_B^{lab}$$
 moves from (3; 3.5) up to (4.2; 4.7) η_E^{lab} = (4.7; 5.2)

Strongly intensive fluctuation measures: two windows case

 $\Sigma[N_F, N_B]$ can be calculated in the model of independent quark gluon strings

Estimations for p+p collisions at LHC energies show growth of $\Sigma[N_F, N_B]$ with separation between windows

Predictions are based only on string decay features, no influence of volume fluctuations

Vechernin, WPCF 2017

$\Sigma[N_F, N_B]$: pseudorapidity separation dependence $^7\text{Be} + ^9\text{Be}$ at 150A GeV/c

20 4 4 6 7 lab

 $\Sigma[N_F, N_B]$ is growing with separation between windows

Behaviour is similar to predictions of string model for p+p collisions at LHC energies

Dominating role of short-range correlations (from a single string)?

Trend is reproduced by EPOS1.99

$\Sigma[N_F, P_{TB}]$ and $\Sigma[P_{TF}, P_{TB}]$ ⁷Be+⁹Be at 150*A* GeV/*c*

distance between centers of windows

$$\Sigma[N_F, P_{TB}] > 1$$
 and $\Sigma[P_{TF}, P_{TB}] > 1$

 $\Sigma[N_F, P_{TB}]$ and $\Sigma[P_{TF}, P_{TB}]$ are growing with separation between windows

Trend is reproduced by EPOS1.99

Conclusions

- ullet Results on system size vs. energy dependence of $[P_T,N]$ fluctuations for particles produced in strong and EM processes within the NA61/SHINE acceptance were reported **no indications** of the critical point of strongly interacting matter so far
- New results on pseudorapidity dependence of $[P_T, N]$ fluctuations for forward energy selected $^7\text{Be}+^9\text{Be}$ collisions at 150A GeV/c $\Delta[P_T, N]$ pseudorapidity dependence is **in disagreement** with EPOS1.99

Conclusions

- New results on $[N_F, N_B]$, $[N_F, P_{TB}]$ and $[P_{TF}, P_{TB}]$ fluctuations in forward energy selected ${}^7\text{Be} + {}^9\text{Be}$ collisions at 150A GeV/c were shown
- First analysis of this kind at SPS energies
- EPOS1.99 qualitatively reproduces the measured trend

• Similar dependence seen in the quark gluon string model for p+p collisions at LHC energies

This work is supported by the Russian Science Foundation under grant 17-72-20045

evgeny.andronov@cern.ch

Thank You!

Back-up

NA61/SHINE Collaboration

- Azerbaijan
 - National Nuclear Research Center,
 Raku
- Bulgaria
 - University of Sofia, Sofia
- Croatia
 - ► IRB. Zagreb
- France
 - LPNHE. Paris
- Germany
 - ► KIT Karleruhe
 - Fachhochschule Frankfurt, Frankfurt
 University of Frankfurt, Frankfurt
- Greece
 - University of Athens, Athens
- Hungary
 - Wigner RCP, Budapest

- Japan
 - KEK Tsukuba, Tsukuba
- Norway
 - University of Bergen, Bergen
- Poland
 - UJK, Kielce
 - NCBJ, Warsaw
 - University of Warsaw, Warsaw
 WUT Warsaw
 - Jagiellonian University, Kraków
 - ► IFJ PAN, Kraków
 - ► AGH, Kraków ► University of Silesia. Katowice
 - University of Silesia, Katowice
 University of Wrocław, Wrocław
- Russia
 - INR Moscow, Moscow
 - JINR Dubna, Dubna
 SPBU, St.Petersburg
 - MEPhl. Moscow

- Serbia
 - University of Belgrade, Belgrade
- Switzerland
 - ETH Zürich, Zürich
 University of Bern, Bern
 - University of Geneva, Geneva
- USA
 - University of Colorado Boulder,
 - Boulder ► LANL. Los Alamos
 - University of Pittsburgh, Pittsburgh
 - FNAL, Batavia
 - University of Hawaii, Manoa

 ${\sim}150$ physicists from ${\sim}30$ institutes

NA61/SHINE in 2021-2024

- Detector upgrade: 1 kHz readout, TOF, PSD, Large Acceptance Vertex Detector during Long Shutdown in 2019-2020
- High statistics beam momentum scan with Pb+Pb collisions for precise measurements of open charm and multi-strange hyperon production
- In parallel, NA61/SHINE performs measurements for long-baseline neutrino facilities at J-PARC and Fermilab; rich neutrino program is planned to be continued after 2020

Centrality selection

One needs to choose set of modules with dominating contribution of spectators and minimal contribution from the produced particles.

The proposed selection is data-driven and is based on correlations between energy and track multiplicity in TPC acceptance - negative correlation implies dominance of spectators in specific module.

Sketch of energy in the PSD modules and multiplicity correlations for $^7\text{Be} + ^9\text{Be}$ collisions at 19A~GeV/c

Centrality selection

Due to the differences in magnetic field and PSD position for various energies, different set of modules is chosen to calculate E_F .

Unexpectedly, for the same collision energy but for different colliding systems same modules show different behaviour.

Sketch of energy in the PSD modules and multiplicity correlations for ${}^{7}\text{Be} + {}^{9}\text{Be}$ and ${}^{40}\text{Ar} + {}^{45}\text{Sc}$ collisions at 19A GeV/c

Strongly intensive fluctuation measures: two windows case

For observables in two separated pseudorapidity intervals F and B one can introduce new strongly intensive quantities:

► N_F, N_B fluctuations Andronov, TMPh 185 1: 1383

$$\Sigma\left[N_{F},N_{B}\right] = \frac{\langle N_{B}\rangle\omega\left[N_{F}\right] + \langle N_{F}\rangle\omega\left[N_{B}\right] - 2cov\left(N_{F},N_{B}\right)}{\langle N_{B}\rangle + \langle N_{F}\rangle}$$

 \triangleright N_F , P_{TB} fluctuations

$$\Sigma[N_F, P_{TB}] = \frac{1}{(\langle N_B \rangle + \langle N_F \rangle) \cdot \langle \langle \rho_T \rangle \rangle_B + \langle N_F \rangle \omega[\rho_T]_B} \cdot \left[\langle P_{TB} \rangle \omega[N_F] + \langle N_F \rangle \omega[P_{TB}] - 2(\langle N_F P_{TB} \rangle - \langle N_F \rangle \langle P_{TB} \rangle) \right]$$

 \triangleright P_{TF} , P_{TB} fluctuations

$$\Sigma[P_{TF}, P_{TB}] = \frac{1}{\langle P_{TB} \rangle \left(\langle \langle p_T \rangle \rangle_F + \omega[p_T]_F \right) + \langle P_{TF} \rangle \left(\langle \langle p_T \rangle \rangle_B + \omega[p_T]_B \right)}.$$

$$\bigg[\langle P_{TB} \rangle \omega [P_{TF}] + \langle P_{TF} \rangle \omega [P_{TB}] - 2 \big(\langle P_{TF} P_{TB} \rangle - \langle P_{TF} \rangle \langle P_{TB} \rangle \big) \bigg]$$

Note the difference: () - average over events;

 $<<...>_{B.F}$ - average over tracks in backward/forward window

Sketch of psedorapidity (lab) spectrum of charged hadrons with proposed windows

7 pairs of intervals considered:

$$\eta_B^{lab}$$
 moves from (3; 3.5) up to (4.2; 4.7) $\eta_E^{lab} \in (4.7; 5.2)$

27/20

$\Sigma[P_T, N]$: pseudorapidity width dependence $^7\text{Be} + ^9\text{Be}$ at 150A GeV/c

To estimate magnitude of experimental biases differences between pure and reconstructed Monte Carlo simulations were studied

This difference was estimated to be less than 5% for all data points

Corrections are not performed

$\Sigma[N_F, N_B]$: pseudorapidity separation dependence 7 Be+ 9 Be at 150A GeV/c

To estimate magnitude of experimental biases differences between pure and reconstructed Monte Carlo simulations were studied

This difference was estimated to be less than 5% for all data points

distance between centers of windows

Corrections are not performed

Statistics

40
Ar+ 45 Sc: 0 – 5%, 0 < y_{π} < y_{beam}

Event stats	19	30	40	75	150
Total	2.1M	3.1M	1.9N	1 4.1M	2.8M
Selected	0.1M	0.2M	0.1N	1 0.5M	0.1M
Track stats	19	30	40	75	150
Total	22M	54M	35M	156M	55M
Selected	5M	11M	8M	37M	15M

$[P_T, N]$ fluctuations

$$\begin{split} P_T &= \sum_{i=1}^N p_{Ti} \\ \Delta[P_T,N] &= \frac{1}{\langle N \rangle \omega[p_T]} \left(\langle N \rangle \omega[P_T] - \langle P_T \rangle \omega[N] \right) \\ \Sigma[P_T,N] &= \frac{1}{\langle N \rangle \omega[p_T]} \left(\langle N \rangle \omega[P_T] + \langle P_T \rangle \omega[N] - 2cov(P_T,N) \right) \\ \text{Here:} \\ \omega[P_T] &= \frac{\langle P_T^2 \rangle - \langle P_T \rangle^2}{\langle P_T \rangle}, \ \langle \rangle \text{ - average over all events} \\ \omega[N] &= \frac{\langle N^2 \rangle - \langle N \rangle^2}{\langle N \rangle} \\ \omega[p_T] &= \frac{\overline{P_T^2} - \overline{p_T^2}}{\overline{p_T}}, \ \bar{\cdot} \text{ - average over all particles} \end{split}$$

Analysis details

- In order to select properly measured central events one uses the following event selection criteria:
 - good beam quality
 - no off-time beam particles
 - good main vertex fit
 - centrality selected by forward energy (in simulations selection is based on energy of all particles in the kinematic region corresponding to the selected modules)
- ▶ In order to select particles produced in strong and EM processes from the primary vertex one uses the following track selection criteria:
 - sufficient number of points inside TPCs
 - track trajectory points to interaction point
 - no electrons/positrons
 - $p_T < 1.5 \text{ GeV}/c$
 - NA61/SHINE acceptance map
 - $0 < y_{\pi}^* < y_{beam}$ (due to poor azimuthal angle acceptance and stronger electron contamination at backward rapidities)

Examples of uncorrected N vs. P_T distributions

 40 Ar+ 45 Sc at 150*A* GeV/*c*, 0 – 5%

N, P_T and $P_{T,2} = \sum_{i=1}^{N} p_{Ti}^2$ are measured for each event.

 $P_{T,2}$ is needed to calculate the scaled variance of the inclusive p_T distribution $\omega[p_T] = rac{\overline{p_T^2} - \overline{p_T}^2}{\overline{p_T}}$ using only event quantities.

33/20

Corrections

Werner, et al., PRC 74:044902

- MC used for corrections: EPOS1.99 model (version CRMC 1.5.3), GEANT3.21. The simulated data were analysed within the NA61/SHINE acceptance.
- Corrections for losses due to event and track selections, trigger biases, detector inefficiencies, secondary interactions and feed-down from weak decays for ⁴⁰Ar+⁴⁵Sc were performed on the level of the first and second moments of measured observables.
- ▶ Correction factors for $\langle N \rangle$, $\langle N^2 \rangle$, $\langle P_T \rangle$, $\langle P_T^2 \rangle$, $\langle N \cdot P_T \rangle$ and $\langle P_{T,2} \rangle$ were calculated as ratios of the corresponding moments for pure to reconstructed MC for positively, negatively and all charged hadrons, separately.

Note on errors

Statistical uncertainties were calculated by dividing the data sets into 30 sub-samples. The statistical error is taken as the standard <code>i£iji£ijdeviation</code> of the sub-sample results divided by $\sqrt{30}$. They are typically smaller than a marker size.

The EPOS1.99 model overestimates $\Delta[P_T, N]$.

The EPOS1.99 model results are close to 1 - the independent particle production model prediction.

$$\Delta$$
, $\Sigma[P_T, N]$: energy vs. system size scan p+p vs. $^{7}\text{Be+}^{9}\text{Be}$ vs. $^{40}\text{Ar+}^{45}\text{Sc}$

Mean number of wounded nucleons $\langle W \rangle$ estimated using the GLISSANDO model Broniowski, Rybczynski, PRC 81: 064909.

Comparison with PbPb results from NA49

To compare results of p_T fluctuations, NA49 cuts were applied to NA61/SHINE data.

In NA49:

- because of high density of tracks, analysis was limited to forward-rapidity region (1.1 $< y_{\pi} <$ 2.6)
- ullet to exclude elastically scattered or diffractively produced protons, analysis was limited in proton rapidity ($y_p < y_{beam} 0.5$)
- $0.005 < p_T < 1.5 \text{ GeV}/c$
- common azimuthal acceptance for all energies NA49, PRC 92 no.4:044905

$\Delta, \Sigma[P_T, N]$: energy dependence

⁴⁰Ar+⁴⁵Sc vs. Pb+Pb (NA49 acceptance)

Results for ⁴⁰Ar+⁴⁵Sc collisions are very close to Pb+Pb. No prominent structures which could be related to the CP are visible.

 $\Delta[P_T, N] < 1$ and $\Sigma[P_T, N] \ge 1$ for both systems.

NA49, PRC **92** no.4:044905

38/20

No prominent structures which could be related to the CP are visible. $\Delta[P_T, N]$ is more sensitive to centrality selection than $\Sigma[P_T, N]$.

NA49, PRC **92** no.4:044905

 Δ , $\Sigma[P_T, N]$: centrality dependence 40 Ar+ 45 Sc, 30A GeV/c

→ 30A GeV/c 30A GeV/c, EPOS1.99

Centrality classes from 0-1% to 0-10%

 $\Sigma[P_T,N]$ is less centrality dependent than $\Delta[P_T,N]$ both in data and in the EPOS1.99 model.

Centrality dependence

Figure 5: (Color online) The UrQMD results for the centrality dependence of $\omega[N_-]$ (squares), $\Delta[P_T, N_-]$ (circles), and $\Sigma[P_T, N_-]$ (triangles) in Pb+Pb collisions at $E_{lab} = 20$ A GeV. A centrality selection is done with a restriction on the impact parameter b. (a): The full 4π detector acceptance. (b): Only particles with center of mass rapidity in the interval $1 < y_\pi < 2$ are accepted (pion mass was assumed for all particles). Open symbols correspond to the case when 10% of particles was randomly rejected.

Gorenstein, Grebieszkow, PRC 89:034903

Systematic uncertainties are under investigation (first estimates - 2% for 3 low energies and of about 5% for 2 top energies)

No prominent structures which could be related to the CP are visible.

Δ , $\Sigma[P_T, N]$: energy dependence p+p vs. 7 Be+ 9 Be vs. 40 Ar+ 45 Sc

No prominent structures which could be related to the CP are visible.

$$\Delta[P_T,N] < 1$$
 and $\Sigma[P_T,N] \geq 1$ for all systems.

Systematic uncertainties are under investigation (first estimates - 2% for 3 low energies and of about 5% for 2 top energies)

Corrections

Corrections for contamination from off-target interactions for ⁴⁰Ar+⁴⁵Sc were not applied, but with applied vertex position selection they are expected to be less than 1%.

Non-target interactions

In order to correct the data for non-target interactions, NA61/SHINE acquires data of both target-inserted and target-removed collisions. Then, in the analysis procedure, non-target interactions are subtracted.

Example of z position distribution of the fitted vertex for Be+Be at 150 GeV/c:

Examples of uncorrected N vs. P_T distributions

 40 Ar+ 45 Sc at 150A GeV/c, 0 - 5%, all charged hadrons

N, P_T and $P_{T,2} = \sum_{i=1}^{N} p_{Ti}^2$ are measured for each event.

 $P_{T,2}$ is needed to calculate the scaled variance of the inclusive p_T distribution $\omega[p_T] = \frac{\overline{p_T^2} - \overline{p_T}^2}{\overline{p_T}}$ using only event quantities.

45/20

Examples of uncorrected N vs. P_T distributions

 40 Ar+ 45 Sc at 150A GeV/c, 0 – 5%, all charged hadrons

N, P_T and $P_{T,2} = \sum_{i=1}^{N} p_{Ti}^2$ are measured for each event.

 $P_{T,2}$ is needed to calculate the scaled variance of the inclusive p_T distribution $\omega[p_T] = rac{\overline{p_T^2} - \overline{p_T}^2}{\overline{p_T}}$ using only event quantities.

