

Investigation of WLS techniques for the LAr-detector in the COHERENT experiment

Rudik Dmitrii Gennadyevich

NRC "KURCHATOV INSTITUTE" - ITEP, MEPhI, COHERENT coll.

- Motivation
 - Coherent elastic neutrino-nucleus scattering (CEvNS)
 - LAr detector for CEvNS registration: CENNS-10
- CENNS-10 WLS improvements
- Investigation of WLS @ ITEP test chamber
 - ITEP test chamber
 - TPB
 - Volume-distributed WLS (Xe-dopant)
- Conclusion

Motivation

- CEvNS is observed by the COHERENT collaboration!*
- Different types of detecting substance allow to determine parameters of this process

10

* Observation of Coherent Elastic Neutrino-Nucleus Scattering COHERENT coll. Science (2017) DOI: 10.1126/science.aao0990

leutron numbe

- CENNS-10 is LAr detector made by IU group @ SNS, Oak Ridge, USA
- Two PMTs: R5912
- WLS technology:
 - First mod: acrylic + tetraphenyl butadiene (TPB) only 0.3 PE/keVee
 - Second mod: PMT's covered by TPB; Teflon reflector covered by TPB current run ~ 2.2 PE/keVee
 - Future: studying of WLS techniques for more (5 - 10) PEs per keVee
- Upgrading for 1-tonne detector... New WLS techiques?

- Teflon reflector
- Two PMTs: R5912 covered by TPB
- Vacuum monochromator: the beginning of operation
- Upgrading:
 - Set of PMT or new PMT?
 - Xe-dopant?
 - Another variant of WLS?

TPB investigation

- Investigation with monochromator (by Enikolopov inst. group)
 - "literature" best thickness is 0.2 mg/sm²
 - Big reabsorption for 0.2 mg/sm²
 - TPB has polycrystalline structure, that's why there is the minimum thickness of TPB layer
- TPB degradation:

•

- 38 % during 5 month storage and short-term tests
- 17% during 1 month under vacuum
- TPB has slow component: 336 ± 43 ns. May influence on the slow LAr-scintillation component parameters!

	decay time (nsec)	abundance (%) *
Instantaneous component	1-10	60 ± 1
Intermediate component	49 ± 1	30 ± 1
Long component	$3550~{\pm}500$	8 ± 1
Spurious component	309 ± 10	2 ± 1

- New type of WLS with TPB molecules is under investigation by Enikolopov inst. group.
 - * arXiv:1411.4524v2 by E. Segreto

200

400

600

800

1000

Time, *1.6ns

Volume-distributed WLS

- Xe-dopant in LAr works like distributed WLS
 - Reemission is occurred only for slow component!
 - Have to use combined method (TPB or another film WLS) to obtain the fast component.
- The decay time of slow component decrease with Xe concentration increasing
- The amount of collected light increasing with Xe concentration
- LAr+Xe mixture is stable during the long continuous run
- Concentration of Xe changing with cryogenic manipulations with mixture

• PSD?

Conclusion

- We are conducting R&D on different types of WLS for LAr detectors
- More knowledge about TPB
- Trying to use TPB-covered teflon as a reflector
- Different characteristics of volume-distributed WLS (Xe-doping) were experimentally investigated
- We have shown stability of LAr+Xe mixture and possibility of usage this type of WLS
- Some things are still in our ToDo list:
 - New type of film-WLS test
 - Further LAr+Xe investigation: possibility of PSD analysis

Thank you for your attention!

ITEP Test chamber

ITEP test chamber, scheme of measurements

- ²²Na => 2 γ in opposite direction (511 keV) 1.2 MeV γ
- Coincidence scheme
- ²⁴¹Am => α-particles 5.6 MeV

LAr test chamber, SPE calibration

- SPE calibration
- Approximately 0.03 p.e./keV in case of LAr + ORNL sample

Xe-doping work Energy transferring

- See for example: C.G. Wahl et al *Pulse-shape discrimination and energy resolution of a liquid-argon scintillator with xenon doping* 2014 JINST 9 P06013
- Ar₂^{*} can be either singlet or triplet state
- Singlet states decay quickly (No time for Energy transferring)
- Triplet excimer decay as follows (with Xe doping)
 - $Ar_2^* + Xe + migration \rightarrow (ArXe)^* + Ar$
 - $(ArXe)^* + Xe + migration \rightarrow Xe_2^* + Ar$
- (ArXe)* state can decay with IR light emitting (see A. Neumeier et al *Intense vacuum ultraviolet and infrared scintillation of liquid Ar-Xe mixtures* EPL, 109 (2015) 12001)

PRELIMINARY

Xe-doping Volume-distributed WLS

- Xe-dopant in LAr works like distributed WLS O. Cheshnovsky, B. Raz, J. Jortner, J. Chem. Phys. 57 (1972) 4628.
- The amount of collected light increasing with Xe concentration

A. Neumeier, et al., Nucl. Instrum. Meth. A 800, 70-81 (2015)

LAr+Xe mixture degradation

