Search for physics beyond the SM at KamLAND

The University of Tokyo Alexandre Kozlov

The 3rd international conference on particle physics and astrophysics Moscow, October 2017

<u>Outline</u>

Neutrinoless double beta decay search using
¹³⁶Xe-loaded liquid scintillator located at the ultra-low
background central region of the KamLAND.

Development of ultra-low background **Nal(Tl)** detectors and related infrastructure for rare event searches.

The 0vββ test of seesaw mechanism

Structure of the KamLAND-Zen (year 2011)

- In 2011, enriched ¹³⁶Xe(2.5-3wt%) + Liquid Scintillator in a ø3.08m miniballoon made of a 25μm-thick Nylon film was deployed at KamLAND.
- It exploits the KamLAND detector radio-purity, light sensors (1879 PMTs 17&20-inch) and data acquisition system.

Events/0.05MeV

KamLAND-Zen 400: final result (year 2016)

Joint work with F. Simkovic to determine g_A using shape of the measured 2vββ spectrum

$$\begin{bmatrix} T_{1/2}^{2\nu\beta\beta} \end{bmatrix}^{-1} \simeq \left(g_A^{\text{eff}} \right)^4 \left| M_{GT-3}^{2\nu} \right|^2 \frac{1}{|\xi_{13}^{2\nu}|^2} \left(G_0^{2\nu} + \xi_{13}^{2\nu} G_2^{2\nu} \right) \\ \left(g_A^{\text{eff}} \right)^2 = \frac{1}{|M_{GT-3}^{2\nu}|} \frac{|\xi_{13}^{2\nu}|}{\sqrt{T_{1/2}^{2\nu-exp} (G_0^{2\nu} + \xi_{13}^{2\nu} G_2^{2\nu})} \\ \text{Can be calculated exactly} \qquad \text{Extracted from the } 2\nu\beta\beta \text{ spectrum shape} \\ M_{GT-1}^{2\nu} \equiv M_{GT}^{2\nu} \\ M_{GT-3}^{2\nu} = \sum_n M_n \frac{4 m_e^3}{(E_n - (E_i + E_f)/2)^3} \qquad \xi_{13}^{2\nu} = \frac{M_{GT-3}^{2\nu}}{M_{GT-1}^{2\nu}} \\ \text{The g eff can be deterimed with the measured half-life ratio} \end{bmatrix}$$

The g_A^{eff} can be deterimed with the measured half-life, ratio of NMEs and calculated NME dominated by transitions through low lying states of the intermediate nucleus.

First test of the IH mass region with KL-Zen 800

Prediction for the $m_{\beta\beta} = 47 \pm 1$ meV: K. Harigaya, M. Ibe, and T. Yanagida "Seesaw mechanism with Occam's razor" PRD 86, 013002 (2012)

The KamLAND-Zen summary

Accomplished:

- □**The KamLAND-Zen 400** was completed in Oct 2015. Enriched xenon was extracted from liquid scintillator, purified by distillation, and returned back to a storage facility.
- **D**We published world's best limit: $T^{0v}_{1/2}$ >1.07×10²⁶ yr at 90% C.L. (m_{ββ} is 61-165meV depending on choice of NME).

Ongoing:

- □A new mini-balloon for 800kg of ¹³⁶Xe will be deployed into KamLAND this year.
- During the **800kg** phase we may test **Yanagida's prediction** for m_{ββ}= 47±1meV.

□<u>Future:</u>

□We work on future KamLAND2-Zen project to cover most of the IH mass region down to m_{BB} =20meV.

Our HPGe detector shielding design

Cart for Pb bricks made of radio-pure stainless steel

The HPGe detector located underground (2700m.w.e.)

lsotop e	Energy, keV	Backg Event	round, s / day	25	cmPb + 5cm Cu	1.3L container
⁴⁰ K	1460.8	10.0		and the second		
⁶⁰ Co	1332.5	1.6		and and		HPG
^{234m} Pa	1001	3.1				
²²⁸ Ac	911.2	3.2				Enough space
²¹⁴ Bi	609.3	2.3		PAL TO	<u>20cm</u>	
²⁰⁸ TI	583.2	3.3				
²¹⁴ Pb	351.9	3.7	HPGe p	-type		
²³⁵ U	185.7	22.5	75% rel. eff. Room B			
²³⁴ Th	92.6	25.0				

- Shielding materials were kept 10+ yrs underground
- Clean-room tent + radon-less air s-m
- Detector's inner volume is purged with boiled off Nitrogen (5.5L/min)

EJ-426

520

540

560

0.8

30.0 0.4

0.2

0.0

400

420

440

460

480

500

Hamamatsu **R1250 PMTs CAEN** 4 channel waveform digitizer **N6724F** (100MHz)

Conical light reflectors covered by **Tyvek** sheets. The Al box made air tight using the **Teflon sealant**.

JSPS grant: 16K05371

- Two 0.32mm-thick EJ-426 scintillator sheets (0.25m × 0.5m each) laminated by 0.25mm-thick clear polyester sheets from both sides were used.
- The EJ-226 is a homogeneous mixture of LiF and ZnS:Ag (mass ratio 1:2), a 95% enriched ⁶Li was used. The ZnS:Ag light yield is 95000photons/MeV.
- ${}^{6}Li + n \rightarrow \alpha + {}^{3}H + 4.78MeV (\sigma = 941barn);$
- The thermal detection efficiency is **34%**;
- The detector is **non-sensitive to γ-rays**;

<u>The thermal neutron flux variation</u> <u>monitoring at the Kamioka mine</u>

Impurity	DAMA/LIBRA	Our result
natK [ppb]	< 20	125
Th-chain [ppt]	0.5 ~ 7.5	0.3 ± 0.5
²²⁶ Ra [µBq/kg]	21.7 ± 1.1	58 ± 4
²¹⁰ Pb [µBq/kg]	24.2 ± 1.6	30 ± 7

The **R13444X** is **4-inch experimental ultralow background Hamamatsu PMT** with a metal body. Optical window is made of Synthetic Silica with the Bialkali photocathode. Spectral response maximum at 420nm (200-650nm range); **QE**@420nm : **34.9%** and **33.38%**. **Gain** at +1500V : 5×10⁶; **TTS**: 13ns

DM detector (Phase 1): 5-inch cylindrical NaI(TI) crystals viewed by R13444 PMTs

We developed radio-pure Nal(Tl) crystals using the Bridgman method. For the new **5×5inch crystal** we expect **radio-purity similar to that of the DAMA/LIBRA crystals.**

Summary for the Nal(TI) research

- □ We developed 5×5-inch highly radio-pure Nal(Tl) crystals for rare event searches.
- In year 2018, we plan to start construction of the Nal(TI) DM detector in a conventional Pb+Cu passive shielding that can be used for testing the DM observation claim made by DAMA/LIBRA collaborations. In more distant future, that detector could be deployed into the ultra-low background central region of KamLAND currently reserved for the KamLAND-Zen 0vββ experiment.
- We intend to use our crystals as a detector for precision studies of the coherent neutrino scattering. Possible neutrino sources are JPARC, and IsoDAR.

BACKUP SLIDES

Use of KamLAND for rare event searches

KamLAND makes searches for Dark Matter, $0v\beta\beta$ signals possible.

enriched xenon was increased from **320kg** to **383kg**.

KamLAND2-Zen to cover the IH mass region

Enriched xenon mass > 1000kg

We need to detect **more light** to improve energy resolution \rightarrow reduce the $2\nu\beta\beta$ tail background. Sensitivity target: m_{BB} ~ 20meV

Gain in number of detected photons (after upgrade to KamLAND2) New LAB scintillator: 1.4 times High QE PMTs: 1.9 times Light collecting cones: 1.8 times

MoGURA based DAQ

- 12ch input VME 9U board
- FADC
 - P : 0.1mV/LSB, 8bit, 1GSPS
 - H : 0.5mV/LSB, 8bit, 200MSPS
 - M : 5 mV/LSB, 8bit, 200MSPS
 - L : 50 mV/LSB, 8bit, 200MSPS
 - ≻ 0.1mV ÷ 10V
- FPGA
 - \succ Up to 10 µsec waveform buffer

• HIT

- > Analog discri.: >5mV
- Digital discri.: >0.5mV
- **TFA** for PMT noise cut

Problem of high intensity fast PMT noise

During development of the Nal(Tl) DM detectors we faced a problem of **intense high amplitude fast PMT noise** (~**10ns wide** pulses). The noise was observed for several **Hamamatsu PMT** types: **R6091**, **R11065-20** 3-inch PMTs, **R13444X** 4-inch PMT, **R1250** 5-inch PMT. Use of different DAQ hardware, opened or underground locations had no effect on this noise. **Existence of the noise was admitted by the Hamamatsu Photonics**. Most likely cause - **fast flashes of light in the PMTs**.

Experimental ultra-low background PMT R13444X

The **PMT is made** of about **37 components**. Materials: **Ni-Fe alloy, SUS304, ceramics, Al (5N), Ag, Ni, ...** Hard to make a realistic GEANT model based limited information available.

Need ~1 month long measurement at the HPGe detector per PMT, we are taking data now. Preliminary, confirmed presence of ⁴⁰K at few tens mBq/PMT, ⁶⁰Co at few mBq/PMT. Search for radio-pure voltage divider parts with Hamamatsu.

- The **R13444X** is the largest (4-inch) ultra-low background Hamamatsu PMT with a metal body. Optical window is made of Synthetic Silica with the Bialkali photocathode. I purchased **two PMTs** this spring to check if it could be used as replacement for 3-inch Hamamatsu ultra-low background R11165-20 PMT.
- Spectral response maximum at 420nm (200-650nm range); QE@420nm : 34.9% and 33.38%. Gain at +1500V : 5×10⁶; TTS: 13ns