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Introduction

A compact stellar object with the spherically symmetric distribution of
matter can nevertheless be characterized by the local pressure anisotropy:

R. L. Bowers and E. P. T. Liang, Astrophys. J. 188, 657 (1974).
Local pressure anisotropy can be caused by different reasons:
- presence of strong magnetic fields inside a star

- availability of superfluid states with the finite orbital momentum of
Cooper pairs or finite superfluid momentum

e appearance of spontaneous deformation of Fermi surfaces
e existence of a solid core
The analysis of the generalized equations of hydrostatic equilibrium

shows that the pressure anisotropy may have the substantial effect on
the maximum equilibrium mass and gravitational surface redshift.

At densities p > 1018 kg/m3 both the relativistic effects and the effects
of general relativity become important.



Introduction

With account of the pressure anisotropy, the equation of state (EoS)
of the system will be also necessarily anisotropic. The EoS is the
essential ingredient in solving the equations of the hydrostatic
equilibrium. In the given work, we choose the polytropic EoS, which is
widely used in many astrophysical applications.

In this research, we will study spherically symmetric relativistic
anisotropic stars with the polytropic EoS. The generalized Lane-Emden
equations will be obtained for the arbitrary anisotropy parameter
A=p;-p, (p,; and p, being the transverse and radial pressure, respectively)
and then applied to the special ansatz for the anisotropy parameter in
the form of the differential relation between the anisotropy parameter A

and the metric function v.

The analytic solutions of these equations can be found for incompressible
anisotropic fluid stars which then used to get their mass-radius relation,
gravitational and binding energy. Also, we will apply the Chandrasekar
variational procedure to study the dynamical stability of incompressible
anisotropic fluid stars with respect to radial oscillations.
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Basic Equations

For spherically symmetric stars
ds®> =e""Vdt* —e*"Vdr’ — r*(d > +sin’0dp*)
The anisotropic energy-momentum tensor for the static configuration
T, =diag(s,~p,,~ P, —P,)
Einstein equations Rik —%Ré‘ik = 87Z'GTik

For the static configuration:

e—‘(}“ - 12)+ 12 = 87Ge,
I r r
e_ﬂ( + 2)_ 12 :87Z-Gpra
r r I
| 1 1 ,, v-4
—e (V' —=VA+=V"+ =87G
> ( > 5 - ) o
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Basic Equations

The equation of hydrostatic equilibrium in a spherically symmetric
anisotropic star

—_g et p)(m(r) +47zp,r’) L 20

) A= o
Pr r(r—2Gm(r)) r P Py
m(r) = 4nj0rgr2dr.
Boundary conditions
pr(o): prO pr(R):O
m(0)=0 M =m(R)
Metric functions
e—ﬂ(r)zl_Em(r) r<Rr V' =26 m(r)+47zprr3
r ’ ’ r(r—2Gm(r))
At the boundary r=R 2GM

A(R)=-v(R)=-In(1 _T)
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Basic Equations

The polytropic EoS

1

1+
p=Kp ' =Kp "
Y — polytropic exponent, n — polytropic index

The energy density for the polytropic EoS

P,
y—1

E=p+

Lane-Emden function 0
P = 0", p=p,0",
0(0)=1, 6(R)=0.
Equation of hydrostatic equilibrium for an anisotropic spherical star

4Adr +(1+(n+1)g,0dv=0, b= f;o
0
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Basic Equations

The equation of hydrostatic equilibrium can be integrated:
1+(n+1)q06’)2+ 4 J-r n Adr v =1(0)
1+(n+1)q, 0,0 ré (1+(n+1)q,0)

From the boundary condition at r=R:

v=v,—In(

i 2GM
B R 4 (R Adr
v, =In —— j - .
(I+(n+1)q,)” p,°° ré"(1+(n+1)q,0)

Finally, the metric function v(r) reads
2GM
R 4 IR Adr
(1+(n+1)g,0)* p,’r r@"(1+(n+1)q,0)
The auxiliary function
u(r) = mr)_r

M 2GM

satisfies the differential equation MU = Arer’.

1
v(r)y=In

(1—e ), u(0)=0,u(R)=1,
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Basic equations

Einstein equation for p, after substituting e*=f(u) and v’ from the equation of
hydrostatic equilibrium:

q,(n+1)dr 1_ZGM )4 GMq,¢

1+(n+1)q,0 r 1+nq,0
(M, 2A 1-2%M o
r p,0 (1+(n+1)q,0) r
The dimensionless radial coordinate ¢ and dimensionless function n
r=af, n= M U, ot = B+
drp,c 47Gp,
Generalized Lane-Emden equations for relativistic anisotropic polytropes
—2(n+1 do 2A .
UL LS b+ Q80 =0,

1+(n+1)q,0 ~d& p,q,(n+1)E"(1+(n+1)q,0)

SZ 20" (1+ng,f). Boundary conditions: 0(0)=1,0(<;) =0,
M
n0)=0,n(cz)=

3
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Basic Equations

The radius R and mass M can be found as functions of the constants q,and K in the
polytropic EoS:

I-n 3-n

R=R'q,2 &, M =M *q? (&),

) n+1 >~ . n+1— 1
R'= | K2, M = K2,
477G \/ G K

n(cg) .

R

The mass-radius relation

GM
R =(n+1)q,

The total energy of a star
3-n

E = 47zj er’dr=M"q,2 7(&,).
The proper energy

4 2 N
E, = 47z_[0Rge2 r’dr = 47zp0053j0§R(1 +nq,d) s 9

\/1— e
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Basic Equations

The gravitational potential energy

) 3 N 1 529n
1 : n(s)

The binding energy: the difference between the energy of the particles scattered to
infinity and the total energy of the system

dé).

A

R )
Ey =Eyy —E, E, =47 peridr,

. =t U, (Sz) _ (e &0
E,=M"q,’ n(&, ~1),u,(£) = dé.
WG gy ) ] \/l_zqo(nm .
: 1n(s)
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Ansatz for the anisotropy parameter A

In order to solve the generalized Lane—Emden equations for functions 6, n with

the corresponding boundary conditions, one needs to specify the anisotropy
parameter A. Some general properties of spherically symmetric relativistic
anisotropic stars can be studied with a certain phenomenological ansatz for the
anisotropy parameter. In this work, we use some special ansatz for the anisotropy
parameter in the form of the differential relation between the anisotropy parameter
and the metric function v. Namely, we will suppose that the presence of the
anisotropy parameter doesn’t change the general form of Lane-Emden equations
for relativistic isotropic stars, but only can change the coefficients in these
equations. Specifically, we set the differential relation between A and v in the form:

B 4Adr
Pl 0"

+(1+(n+1)q,0)dv =1+ pq,0)dv

With this ansatz, one can obtain the metric function v in the form

_2GM
R

(1+59,0) *
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Analytical solutions for incompressible anisotropic

stars

The modified Lane-Emden equations, corresponding to the above ansatz:

5 2(” ; l)qoq dé 3 An+l
+n+0,E0" =0,

d77 2 Nh
— =& (1+nq.0
E (1+nq,0)

Look as in the isotropic case, but with that difference that the impact of the
anisotropy parameter is reflected in the coefficient B (substituting the multiplier (n+1))

The analytical solutions for incompressible anisotropic fluid stars (p=const, n=0):

n(§)=§—3, 1+36,0 =iﬂ(l—%§2)¥.
3 1+ 49,0 1+ p4q, 3
20, 2
With account of the 1 (1+3q,)(1 3 )t —(+/4q)

.
qu1+ﬂ%>—ﬂa+3%xr-%}5ﬂ4
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Analytical solutions for incompressible anisotropic

stars

The positive root of 8(¢)

The binding energy of incompressible anisotropic fluid stars

Mg -2+ LISy areing 2o - L)

The gravitational potential energy at n=0:

Q=-F,
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A(§), p,(€) and p,(&) dependencies

0.01} /_\ L R
00— e e == =

-0.01 | - B

-0.02 » |

A'/pr()

-0.03 | - :
-0.04 | B=0.5 -

-0.05 ——-9g,=0.01 L —-—-q,=001 | © - —-q,=0.01

pr/pr 0

pt /prD
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M(q,), Eg(d,) and Q(q,)dependencies

0.6 0.6

M/M*

The gravitational potential energy at n=0:

Q/M =-E, /M’
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Mass-radius relation for incompressible anisotropic

8.0x10°

6.0x10%°

[kg]

= 4.0x10°}

2.0x10° }

0.0

R [km]

The limiting masses for each configuration are shown by full dots. When q, varies at the

given [3, the current point moves along almost the same curve for this specific central

density independently of B, the difference being only in the limiting masses for different f3.
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Dynamical stability of incompressible anisotropic

fluid stars

Let us consider the stability of spherically symmetric anisotropic stars with respect to
radial oscillations, assuming that they do not violate the spherical symmetry.

Einstein equations:

A1 1 ol
e (= —-)+—==82GT., 1 =—"2
( r r2) r2 T 0 ar
e H(C L)+ =82GT,
r r r
—le_’%(v"—ll/'ﬁ'-l-l '2_|_V —A )+le_v(/;{+/;t(ﬂ:—l))):87Z'GT22 =87Z'GT33,
2 2 2 2 o
_2_i=8xGT), =<
r ot

The radial component of the equation Ti!(k =0

T +T + %Tlo(l) + 1)+ %(Tll ~-T))+ %(Tll ~-T.)=0.
I
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Dynamical stability of incompressible anisotropic

fluid stars
The energy—momentum tensor for a spherically symmetric anisotropic star with radial

motions
| TE=(e+ p)uu* - pS* +(p, - p)s;s",

u; =dx;/ds is the fluid four-velocity, s; is the unit space-like vector with the properties

s'u =0,s's =—1.
For the motions in the radial direction

- 3 3 dr

J e ve 0.0, v=3r

J1- v e \J1-\2 e dt
veTV e 2

0,0)

\/1 vt Jl-vier

The small radial oscillations
_ 0 A0 0
=& +0&,p, =P, +OP,, P,=P; +OP;
v=v'4+06v,1=1"+51
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Dynamical stability of incompressible anisotropic

fluid stars

Let all perturbations dg,0p,,5p,, v, ~e'”.
Let us introduce a Lagrange displacement y: v =y

After linearizing Einstein equations with respect to small perturbations, the equation for
the frequencies of radial oscillations acquires the form

W s A
et “<e+pr>w——pr <7<v +7+—>+—><pt p’)

0 .
+87Ge* p/ (&’ + p?)t//—ya(;(p{’ — P y) - golfpo (p; —;(pf’ -p,))’

vO

3v0+/1O 0 O vo

eZ -
ar o —(r'e 2%”))——(7400 (rze ‘y)+op).

The boundary conditions

w(r=0)=0,0p,(r=R)=0.
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Dynamical stability of incompressible anisotropic

fluid stars

In order to get the variational basis for finding w, let us multiply both parts of the last

equationon I l//eXp(V + A7 ——) and integrate over the range of r.

2
Omitting the upper indexes “0” as no longer necessary, for incompressible stars (y—)

one gets
31-v A+3v

a)je2 (e+p)r’y’dr= jeZ

pf( (r'e Sy dr

A+v A+v

ety S powr-2 e i+ Dp-p)

R —+v ——
—27_[0e2 w%a(rze 2gy)dr.

The Lagrange displacement g should be chosen such that w? is minimized.

A sufficient condition for the occurrence of the dynamical instability is vanishing of the
r.h.s. of this equation for some trial form of the Lagrange displacement g satisfying
the boundary conditions.
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Dynamical stability of incompressible anisotropic

fluid stars

After introducing the auxiliary function x=e¥2y, changing the integration variable
r=ag, a?=q,/41mGp,, substituting p,= q,p,0, €= p, and using expressions for A and

metric functions at n=0: ) 2GM
r 2 ’ R
MO PO et 1T e R
(1 +/49,0)”
the variational equation reads (—(§ ))
w’ ‘R (1+qo<9)§2)(2 dé (& d& do
3 j 1 _7/j 3

e ae 2057 (14 pa,0)7 2=y (14 g0y

y(1=p) & 52;( d vy 6 d&
(1= 7k >ﬁ (14590 (1490
2,2 19 v el
_7/(1—,3)J5R§ZV Ve ] B3ECD g,
C 2% 5 2087 5
) (1 ) (1+59,6) (1 )? (1+ B9,0)
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Dynamical stability of incompressible anisotropic

The trial functions

fluid stars

The critical values of the parameter q, for the appearance of the dynamical instability
of an incompressible anisotropic fluid star at different values of the parameter 3

The local pressure anisotropy with A=p,-p,>0 can
make the incompressible fluid stars dynamically
unstable.

do. €valuated with
B the trial function

X1=e-v/2§ X2=\/§
0.1 1.391 _
0.3 1.796 _
0.5 2.526 _
0.7 4.210 _
0.9 11.646 _
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Thank you for attention
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