Overview of \mathcal{CPV} parameter ϕ_s determination

V. Batozskaya¹ on behalf of LHCb collaboration

¹National Centre for Nuclear Research, Warsaw, Poland

III International Conference on Particle Physics and Astrophysics 2-5 October 2017

V. Batozskaya, NCBJ, Warsaw, Poland

Overview of CPV parameter ϕ_s determination 1/14

Outline

${\cal CP}$ Violation CKM matrix Introduction to ϕ_s

$\phi_{\textit{s}}$ measurement

Analysis method

$$B_s^0 \rightarrow J/\psi(\rightarrow \mu^+\mu^-)\phi(\rightarrow K^+K^-)$$

 $B_s^0 \rightarrow J/\psi(\rightarrow \mu^+\mu^-)\pi^+\pi^-$
 $B_s^0 \rightarrow \psi(2S)(\rightarrow \mu^+\mu^-)\phi(\rightarrow K^+K^-)$
 $B_s^0 \rightarrow J/\psi K^+K^-$ in high $M(KK)$
Experimental results

Conclusion

V. Batozskaya, NCBJ, Warsaw, Poland

Violation of the \mathcal{CP} symmetry

Three mechanisms of \mathcal{CP} violation exist:

- Direct (in decay amplitudes)
- Mixing (indirect)
 - Described by phenomenological Schrödinger equation: $i\frac{d}{dt} \begin{pmatrix} |B_{s}^{0}(t)\rangle \\ |\bar{B}_{s}^{0}(t)\rangle \end{pmatrix} = \left(\mathbf{M} - \frac{i}{2}\Gamma\right) \begin{pmatrix} |B_{s}^{0}(t)\rangle \\ |\bar{B}_{s}^{0}(t)\rangle \end{pmatrix}$
 - Solutions give two mass eigenstates: B_H and B_L $|B_L\rangle = p|B_s^0\rangle + q|\bar{B}_s^0\rangle$ $|B_H\rangle = p|B_s^0\rangle - q|\bar{B}_s^0\rangle$
 - Mixing parameters

 $\Delta m_s = M_H - M_L \qquad \Delta \Gamma_s = \Gamma_L - \Gamma_H$ $\Gamma_s = \frac{\Gamma_L + \Gamma_H}{2} \qquad \phi_{12} = \arg(-M_{12}/\Gamma_{12})$

Interference between direct decays and decays with mixing

In the Standard Model \mathcal{CP} violation is described by the CKM matrix

V. Batozskaya, NCBJ, Warsaw, Poland

Overview of CPV parameter ϕ_s determination 3/14

$$V_{CKM} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} = \begin{pmatrix} 1 - \frac{\lambda^2}{2} & \lambda & A\lambda^3(\rho - i\eta) \\ -\lambda & 1 - \frac{\lambda^2}{2} & A\lambda^2 \\ A\lambda^3(1 - \rho - i\eta) & -A\lambda^2 & 1 \end{pmatrix} + O(\lambda^4)$$

$$\lambda \approx 0.22 \quad [PRL 53 (1984) 1802]$$

• 6 unitary triangles Triangle (*sb*): $V_{us}V_{ub}^* + V_{cs}V_{cb}^* + V_{ts}V_{tb}^* = 0$

V. Batozskaya, NCBJ, Warsaw, Poland

• SM prediction is very small and precise:

$$\begin{split} \phi_s^{c\bar{c}s} &= -2\beta_s = -2arg\big(-\frac{V_{ts}V_{tb}^*}{V_{cs}V_{cs}^*}\big) \\ \phi_s^{c\bar{c}s} &= -0.0376^{+0.0008}_{-0.0007} \text{ rad} \end{split}$$

[CKMFitter, PRD 84 (2011) 033005]

* Ignoring subleading penguin contributions

- If new particles contribute to "box" diagrams, then value of $\phi_{\rm M}$ will be different than SM prediction

$\phi_s^{c\bar{c}s}$ is an excellent probe for possible NP!

CP Violation

Measurement of the phase ϕ_s

• $b \rightarrow c\bar{c}s$ transition

- $B_s^0 \rightarrow J/\psi K^+ K^-$
- $B_s^0 \rightarrow J/\psi \pi^+\pi^-$
- $B_s^0 \to \psi(2S)\phi$
- $B_s^0 \rightarrow D_s^+ D_s^-$

• $b \rightarrow s\bar{s}s$ transition • $B_s^0 \rightarrow \phi\phi$

 CP Violation
 \$\phi_s\$ measurement
 Conclus

 000
 0000000
 0

 Analysis method

Analysis method

Time dependent angular flavour tagged analysis:

$$\frac{d^4\Gamma(B_s^0\to J/\psi\phi)}{dtd\Omega}\propto \sum_{k=1}^N h_k(t)f_k(\theta_K,\theta_I,\phi)$$

•
$$h_k(t)$$
 time dependent part: $\phi_s, \Delta\Gamma_s, \Gamma_s, \Delta m_s, A_i, \delta_i (i = 0, \bot, \parallel, S)$

- $f_k(\Omega)$ angular dependent part: θ_K, θ_I, ϕ
- Flavour tagging is determined using two algorithms:
 - Same Side charge kaon which is correlated with B_s^0
 - Opposite Side charge lepton or kaon from second *B* decay
 - Self tagging decays to calibrate the algorithms: $B^+ \rightarrow J/\psi K^+$ for OS and $B_s^0 \rightarrow D_s^- \pi^+$ for SS
 - Estimation of the algorithm efficiency:
 - tagging efficiency ε_{tag} and corrected mistag probability ω
 - total efficiency $\varepsilon_{eff}{=}\varepsilon_{tag}(1{-}2\omega)^2{=}(3.73\pm0.15)\%$ for $B_s^0\to J/\psi\phi$

• Fit is carried out in 6 bins of $m(K^+K^-)$ region to measure S-wave contribution

$B_s^0 \to J/\psi(\to \mu^+\mu^-)\phi(\to K^+K^-)$ (2)

Experiment	ϕ_s [rad]	$\Delta\Gamma_s \ [ps^{-1}]$	Reference
CDF (9.6 fb ⁻¹)	[-0.60,+0.12], 68% CL	$+0.068 \pm 0.026 \pm 0.009$	[PRL 109 (2012) 171802]
D0 (8.0 fb ⁻¹)	-0.55 ^{+0.38} -0.36	$+0.163^{+0.065}_{-0.064}$	[PRD 85 (2012) 032006]
ATLAS (19.2 fb ⁻¹)	$-0.090 {\pm} 0.078 {\pm} 0.041$	$+0.085\pm0.011\pm0.007$	[JHEP 08 (2016) 147]
CMS (19.7 fb ⁻¹)	$-0.075 {\pm} 0.097 {\pm} 0.031$	$+0.095 \pm 0.013 \pm 0.007$	[PLB 757 (2016) 97-120]
LHCb (3.0 fb ⁻¹)	$-0.058 {\pm} 0.049 {\pm} 0.006$	$+0.0805 \pm 0.0091 \pm 0.0032$	[PRL 114 (2015) 041801]

* First uncertainty is statistical, second is systematic uncertainty

- $B_s^0 \rightarrow J/\psi K^+ K^-$ is a golden channel: measurement of ϕ_s , Γ_s , $\Delta\Gamma_s$, Δm_s
- Consistent with SM predictions; no direct \mathcal{CP} violation
- LHCb dominant contribution to systematic uncertainty gives decay time efficiency, angular efficiency and background subtraction
- No polarisation-dependent \mathcal{CP} violation observed

Most precise measurement of lifetime parameters to date by LHCb!

- Amplitude analysis to study resonance structure of $\pi^+\pi^-$ states $\Rightarrow CP$ -odd state of $\pi^+\pi^-$ is >97.7% at 95% CL
- Largest component in resonant states is the $f_0(980)$ with $\sim 70\%$

First uncertainty is statistical, second is systematic uncertainty

- Consistent with SM predictions; no direct CP violation assumed equal for all $\pi^+\pi^-$ states
- Main contribution to systematic uncertainty from known $\pi^+\pi^-$ resonance model

Most precise $\phi_s^{c\bar{c}s}$ measurement from combination of $B_s^0 \to J/\psi K^+ K^-$ and $B_s^0 \to J/\psi \pi^+ \pi^-$ to date!

V. Batozskaya, NCBJ, Warsaw, Poland

Overview of CPV parameter ϕ_s determination 10 / 14

- Consistent with $B_s^0 \rightarrow J/\psi K^+ K^-$ fit results
- Limited size of data sample
- Systematic uncertainty is < 0.2σ_{stat} except for Γ_s (~ 0.6σ_{stat})

V. Batozskaya, NCBJ, Warsaw, Poland

* First uncertainty is statistical, second is systematic uncertainty

- Combination with $B_s^0 \rightarrow J/\psi \phi$ improves a precision of the ϕ_s measurement by over 9%
- Main fractions: ${\sim}70\%~\phi(1020),~{\sim}10\%~f_2'(1525)$ and ${\cal S}$ -wave each
- Largest contribution to systematic uncertainty from the resonance fit model (±0.0236 rad)

- $B_s^0
 ightarrow J/\psi KK$ gives the lowest uncertainties
- LHCb dominates world average
- Consistent with SM predictions but still a lot of window for NP

LHCb 8

- Most precise measurement of ϕ_s in the B_s^0 system has been made at LHCb using Run I data
- Future perspectives:
 - Run I: $B_s^0 \rightarrow J/\psi(\rightarrow e^+e^-)KK$, $B_s^0 \rightarrow (K^+\pi^-)(K^-\pi^+)$
 - Run II: new modes with more data
 - Estimations (only σ_{stat}) for LHCb [LHCb-PUB-2014-040]

Decay mode	Run I (3 fb ⁻¹)	Run II (8 fb ⁻¹)	LHCb upgrade	Theory
$\sigma_{stat}(\phi_s)$ [rad]	(2010-2012)	(2015-2018)	(+2020, 50 fb ⁻¹)	limit
$B_{\rm s}^{\rm 0} \rightarrow J/\psi KK$	0.049	0.025	0.009	~ 0.001
$\tilde{B}_{s}^{0} \rightarrow J/\psi f_{0}$	0.068	0.035	0.012	\sim 0.01

• Penguin effects in B_s^0 mixing are under control: $\Delta \phi_s \sim 0.001 \pm 0.020$ rad ... but more work still be needed for LHCb upgrade

[JHEP 11 (2015) 082] [PLB 742 (2015) 38]

Thank you for your attention!

V. Batozskaya, NCBJ, Warsaw, Poland

Overview of CPV parameter ϕ_s determination 14/14

Backups

V. Batozskaya, NCBJ, Warsaw, Poland

Overview of \mathcal{CPV} parameter ϕ_s determination 15 / 14

- Single-arm forward spectrometer, covering $2 < \eta < 5$ (10< $\theta < 300$ (250) mrad)
- Momentum resolution: $\Delta p/p = 0.5\%$ at 5 GeV/c to 1.0% at 200 GeV/c
- Impact parameter resolution: 20 μ m for high p_T tracks

Dipole Magnet

- Decay time resolution: ~ 45 fs
- Invariant mass resolution: $\sim 8~{\rm MeV/c^2}$ for $B\to J/\psi X$ decays with J/ψ mass constraint
- $\mathcal{L} = 3 \text{ fb}^{-1}$ collected in Run I at $\sqrt{s} = 7-8 \text{ TeV}$
- V. Batozskaya, NCBJ, Warsaw, Poland

Overview of CPV parameter ϕ_s determination 16 / 14

Chambers

Calorimeter

LHCD

$B^0_s ightarrow D^+_s D^-_s$

- Purely $\mathcal{CP}\text{-even state} \Rightarrow$ no angular analysis is required
- Candidates are reconstructed in four final states \Rightarrow combinations of D_s^{\pm} into $KK\pi$, $K\pi\pi$ and $\pi\pi\pi$
- $B^0 \to D^-(\to K^+ 2\pi^-) D^+_s (\to K^\pm \pi^+)$ is used as control channel

 $\phi_{\rm s} = 0.02{\pm}0.17{\pm}0.02~{\rm rad}$

* First uncertainty is statistical, second is systematic uncertainty

[PRL 113 (2014) 211801]

Decay time [ps]

- Consistent with SM predictions, no direct \mathcal{CP} violation
- Systematics dominated by the decay time resolution
- Decay time uncertainty calibrated from the simulation

V. Batozskaya, NCBJ, Warsaw, Poland

Overview of CPV parameter ϕ_s determination 18/14