

Measurement of the CKM phase φ_1 in $b \rightarrow c \overline{u} d$ transitions at Belle (and BaBar)

Vitaly Vorobyev (on behalf of Belle Collaboration)

Budker Institute of Nuclear Physics

and

Novosibirsk State University

The 3rd International Conference on Particle Physics and Astrophysics October 4th 2017, Moscow, Russia

Outline

- CP violation study using the $b \to c \bar{u} d$ transition
- Recent results:
 - Combined BaBar + Belle analysis of $\overline{B}{}^0 \rightarrow D_{CP}^{(*)}h^0$ (2015)
 - Combined BaBar + Belle analysis of $\bar B^0\to D^{(*)}h^0,\,D^0\to K^0_S\pi^+\pi^-$ (2017 preliminary)
 - Model-independent analysis of $\bar B^0\to D^{(*)}h^0,\,D^0\to K^0_S\pi^+\pi^-$ with Belle data (2016)
- Prospects for measurement of the angle φ_1 in $b \to c \bar{u} d$ at LHCb and Belle II

2

4.10.2017

Determination of the CKM angle φ_1

• Time-dependent interference between decays w/ and w/o oscillation

- A *CP*-specific final state f provides sensitivity to $sin(2\varphi_1)$
- Tagging of the *initial B⁰ flavor* is necessary
- Measurement of B^0 *decay vertex* is needed for time-dependent analysis

• The value of $sin(2\varphi_1)$ is measured precisely in $b \to c\bar{c}s \ (B^0 \to J/\psi K_S^0, ...)$ transitions:

$$\sin(2\varphi_1)_{b \to c\bar{c}s} = 0.691 \pm 0.017$$

• Trigonometric ambiguity: $2\varphi_1 \rightarrow \pi - 2\varphi_1$

Features of the $b \to c \bar{u} d$ transition

- A complementary and theoretically clean approach to access φ_1
- The $\overline{B}{}^0 \rightarrow D^0_{CP} h^0$ $(h^0 = \pi^0, \eta^{(\prime)}, \omega)$ decays are dominated by tree amplitudes and are not sensitive to most of physics beyond standard model (BSM)
- A sizable deviation in the *CP* asymmetry of $\overline{B}{}^0 \rightarrow D^0_{CP} h^0$ decays from $b \rightarrow c\bar{c}s$ would indicate BSM
- Time-dependent Dalitz analysis of the $\overline{B}{}^0 \rightarrow D^0 h^0$, $D^0 \rightarrow K_S^0 \pi^+ \pi^-$ decays can be employed to measure $\cos(2\varphi_1)$ and to resolve the trigonometric ambiguity.

4.10.2017

The Belle and BaBar experiments

- The Belle experiment:
 - Operation period: 1999 2010
 - 1.04 ab⁻¹ integrated luminosity
 - $772 \times 10^6 B\overline{B}$ pairs

Instrumented Iron Yoke Silicon Vertex Detector Drift Chamber

• The BaBar experiment:

• $471 \times 10^6 B\overline{B}$ pairs

• Operation period: 1999 – 2008

• 541 fb⁻¹ integrated luminosity

BELLE

5

Time-dependent measurements at an asymmetric *B*-factory

- Flight distance $\Delta z \approx 200 \ \mu m$
- Vertex resolution $\sigma(\Delta z) \approx 130 \ \mu m$
- Correct flavor tagging for $\approx 80\%$ events
- Boost factor:
 - Belle $\beta \gamma = 0.425$
 - BaBar $\beta\gamma=0.56$

Time-dependent *B* **decay rate** $g(\Delta t) = \frac{1}{4\tau_B} e^{-\frac{|\Delta t|}{\tau_B}} (1 + q[A\sin(\Delta m\Delta t) - B\cos(\Delta m\Delta t)])$

- $q = \pm 1$ denotes the initial flavor of signal *B* meson
- Standard model predicts $A = -\eta_f \sin(2\varphi_1)$ and B = 0 for a *CP*-specific final state with *CP* parity η_f

Background

- Dominant source of background originates from $e^+e^- \rightarrow q\bar{q}, q \in \{u, d, s, c\}$
- Flavor-specific decays like $B^- \to D^{(*)0}\rho^-$. Less than 8% of the signal

Main kinematic variables

$$M_{bc} = \sqrt{\left(E_{\text{beam}}^*\right)^2 - (p_{\text{B}}^*)^2}$$
 * denotes the e^+e^- center-of-mass frame

$$\Delta E = E_B^* - E_{\text{beam}}^*$$

U ICPPA-2017

Combined BaBar + Belle analysis of $\bar{B}^0 \rightarrow D_{CP}^{(*)} h^0$ PRL 115, 121604 (2015)

(a) BABAR $\eta_f = +1 + B^0$ Tag (b) BABAR $\eta_f = -1$ ♦ B⁰ Tag g Events / 1 etry 0.0 (d) Belle $\eta_{\rm f} = -1$ (c) Belle $\eta_f = +1$ Events / 1 ps letry 2 4 6 8-8 -6 -4 -2 0 2 -4 -20 4 6 $\Delta t (ps)$ $\Delta t (ps)$

 $A = -\eta_f \sin(2\varphi_1)$ and B = 0 for a *CP*-specific final state

Time-dependent B decay rate

 $g(\Delta t) \propto 1 + q[A\sin(\Delta m\Delta t) + B\cos(\Delta m\Delta t)]$

Maximum likelihood fit of the Δt distributions $\sin(2\varphi_1) = 0.66 \pm 0.10 \text{ (stat.)} \pm 0.06 \text{ (syst.)}$

• No significant direct *CP* violation found: $B = -0.02 \pm 0.07$ (stat.) ± 0.03 (syst.)

Main systematics sources

- Peaking background (0.049)
- Δt resolution functions (0.020)
- Vertex resolution (0.015)

The method

- Time-dependent Dalitz analysis enables to extract both $sin(2\varphi_1)$ and $cos(2\varphi_1)$ [Bondar, Krokovny, Gershon PLB 624, 1 (2005)]
- Variation of the (unknown) D⁰ decay amplitude phase over the Dalitz plot provides the sensitivity
- A (phenomenological) *D*⁰ decay amplitude model is required to predict the phase

The $D^0 \to K_S^0 \pi^+ \pi^-$ decay model

- The model is obtained from flavor-tagged $e^+e^- \rightarrow c\bar{c} \ (D^{*\pm} \rightarrow D^0\pi^{\pm})$ data
- The model includes 14 intermediate two-body resonances
- The K-matrix and LASS parametrizations are used to model the $\pi\pi$ and $K\pi$ S-waves

[M. Röhrken, Moriond 2017]

ICPPA-2017

Combined BaBar + Belle analysis of $\bar B^0\to D^{(*)}h^0$ with $D^0\to K^0_S\pi^+\pi^-$

Signal modes

• $D^{(*)0}h^0$, with

- h^0 in $\pi^0 \to \gamma\gamma$, $\eta \to \gamma\gamma$, $\pi^+\pi^-\pi^0$ and $\omega \to \pi^+\pi^-\pi^0$
- $\cdot \ D^{*0} \to D^0 \pi^0$

Background

• Similar to the $\bar{B}^0 \to D_{CP}^{(*)} h^0$ case

Main variables

- M'_{bc} modified M_{bc}
- ΔE energy difference
- NN'_{out} neural net response

ICPPA-2017

Combined BaBar + Belle analysis of $\bar B^0\to D^{(*)}h^0$ with $D^0\to K^0_S\pi^+\pi^-$

Maximum likelihood fit of the Δt distributions $sin(2\varphi_1) = 0.80 \pm 0.14 \text{ (stat.)} \pm 0.06 \text{ (syst.)} \pm 0.03 \text{ (model)}$ $cos(2\varphi_1) = 0.91 \pm 0.24 \text{ (stat.)} \pm 0.09 \text{ (syst.)} \pm 0.07 \text{ (model)}$ $\varphi_1 = (22.5 \pm 4.4 \text{ (stat.)} \pm 1.2 \text{ (syst.)} \pm 0.6 \text{ (model)})^0$

Main systematics sources

- Possible fit bias
- Vertex reconstruction
- Δt resolution function
- Signal purity
- Background Δt p.d.f.s

Direct exclusion of the 2^{nd} solution @ 7.3 σ

Model-independent analysis of $\bar{B}^0 \to D^{(*)} h^0$ with $D^0 \to K_S^0 \pi^+ \pi^-$

The binned Dalitz plot approach

Dalitz plot is divided into 16 regions [Giri et al. PRD 68, 054018 (2003)]

- Three parameters K_i , C_i and S_i are defined for the i^{th} region:
 - K_i probability of D^0 meson decay into the i^{th} region
 - C_i and S_i cos and sin of the decay amplitude phase difference between \overline{D}^0 and D^0 averaged over the *i*th region

$$g_i(\Delta t) \propto U_i + q[A_i \sin(\Delta m \Delta t) - B_i \cos(\Delta m \Delta t)]$$
$$U_i = K_i + K_{-i}, \qquad A_i = K_i - K_{-i},$$
$$B_i = 2\sqrt{K_i K_{-i}} (S_i \cos(2\varphi_1) + C_i \sin(2\varphi_1))$$

- The parameters C_i and S_i have been measured in coherent decays of $D^0 \overline{D}^0$ pairs in CLEO experiment [PRD 82, 112006 (2010)]
- The equal-phase Dalitz plot partitioning increases sensitivity to φ_1 [Bondar, Poluektov Eur. Phys. J. C47, 347 (2006); C55, 51 (2008)]

Model-independent analysis of $\bar{B}^0 \rightarrow D^{(*)}h^0$ with $D^0 \rightarrow K_S^0 \pi^+ \pi^-$

Main variables

- + M_{bc} beam-energy constrained mass
- ΔE energy difference

The parameters of Dalitz plot

- C_i and S_i from CLEO-c (external input)
- K_i from $B^- \to D^0 \pi^-$ decays

Signal yield 962 ± 41 ICPPA-2017

4.10.2017

Model-independent analysis of $\bar{B}^0 \to D^{(*)} h^0$ with $D^0 \to K_S^0 \pi^+ \pi^-$

Maximum likelihood fit of the Δt distributions $sin(2\varphi_1) = 0.43 \pm 0.27 \text{ (stat.)} \pm 0.08 \text{ (syst.)}$ $cos(2\varphi_1) = 1.06 \pm 0.33 \text{ (stat.)} {}^{+0.21}_{-0.15} \text{ (syst.)}$ $\varphi_1 = (11.7 \pm 7.8 \text{ (stat.)} \pm 2.1 \text{ (syst.)})^0$

Main systematics sources

- Uncertainties of C_i and S_i (dominant)
- Δt resolution function
- Signal purity
- Background Δt p.d.f.s
- Uncertainties of K_i

Direct exclusion of the 2nd solution @ 5.1σ

The first model-independent measurement of $\cos(2\varphi_1)$

15

Prospects for LHCb and Belle II

Appropriate $b \rightarrow c \bar{u} d$ processes

- $\overline{B}{}^0 \rightarrow D_{CP}^{(*)0} h^0$
- $\overline B{}^0\to D^{(*)0}h^0$ with $D^0\to K^0_S\pi^+\pi^-$

• $\overline{B}{}^0 \rightarrow D_{CP}^{(*)0} \pi^+ \pi^-$

• $\overline{B}{}^0 \rightarrow D^{(*)0}\pi^+\pi^-$ with $D^0 \rightarrow K^0_S\pi^+\pi^-$

- Model uncertainty can limit future precise measurements.
- A model-independent approach should be employed

 $\bar{B}^0 \to D^0 \pi^+ \pi^-$ Dalitz plane

The $\bar{B}^0 \to D^0_{(CP)} \pi^+ \pi^-$ decay

- May have only charged final-state particles
- Accessible for LHCb
- Can be analyzed with the binned Dalitz plot approach

Estimates for the model-independent approach

- Belle II with $50 \times (Belle \ data \ set)$ will be able to measure the angle φ_1 in $b \rightarrow c \overline{u} d$ transitions with precision below one degree
- LHCb with 70 × (run I data set) will be able to measure the angle φ_1 in $\bar{B}^0 \to D^0_{(CP)} \pi^+ \pi^-$ decays with precision about 1.5⁰

Conclusions

• The $b \rightarrow c\bar{u}d$ transition provides theoretically clean and the most precise approach to measure the $\cos(2\varphi_1)$ $\cos(2\varphi_1) = 0.91 \pm 0.24$ (stat.) ± 0.09 (syst.) ± 0.07 (model)

 $\cos(2\varphi_1) = 1.06 \pm 0.33 \text{ (stat.)}^{+0.21}_{-0.15} \text{ (syst.)} \leftarrow$

- Study of the $\bar{B}^0 \to D^{(*)0}h^0$ decays with the full BaBar and Belle data sets resolved the angle φ_1 ambiguity
- In the future, the angle φ_1 can be measured in $b \to c \overline{u} d$ transitions with precision below one degree in a modelindependent way

BaBar + Belle

Belle model ind.

Backup

17

The CKM *CP* violation mechanism

 $\mathcal{L} \propto -\frac{g}{\sqrt{2}} (\bar{u}_L, \bar{c}_L, \bar{t}_L) \gamma^{\mu} W^+_{\mu} V_{CKM} (d_L, s_L, b_L)^T + h.c.$

The CKM matrix

 The unitary matrix of quark mixing for weak charged currents (Cabibbo, Kobayashi and Maskawa, CKM)

$$\begin{pmatrix} d'\\s'\\b' \end{pmatrix} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub}\\V_{cd} & V_{cs} & V_{cb}\\V_{td} & V_{ts} & V_{tb} \end{pmatrix} \begin{pmatrix} d\\s\\b \end{pmatrix}$$

- Four independent parameters
- Can be parametrized with three Euler angles and single phase.

Combined **BABAR** +Belle Analysis of $\mathbf{B}^{0} \rightarrow \mathbf{D}^{(*)}\mathbf{h}^{0}$ decays

• The $D \to K_S^0 \pi^+ \pi^-$ Dalitz model is directly obtained from flavor-tagged $e^+e^- \to c\bar{c}$ data.

- The Dalitz model accounts for 14 intermediate two-body resonances.
- The K-matrix and LASS parameterizations are used to model the ππ and Kπ S-waves.
- The $D \rightarrow K_S^0 \pi^+ \pi^-$ Dalitz model extracted from $e^+e^- \rightarrow c\bar{c}$ data is used to extract sin(2 β) and cos(2 β) from the B^0 decay combining *BABAR*+Belle data.

03/22/2017 Markus Röhrken Dark Photon at BaBar & Combined BaBar+Belle Analyses 8/12