D. Baranov, M. Kapishin, T. Mamontova, G. Pokatashkin, I. Rufanov, V. Vasendina, A. Zinchenko

The BM@N experiment at JINR: status and physics program

Joint Institute for Nuclear Research

SCIENCE BRINGING NATIONS TOGETHER

ICPPA-2017

On behalf of the BM(a)N collaboration

- 1. Motivation
- 2. Detector geometry
- **3**. Technical run (Run 5, Dec. 2016):
 - ✓ Spatial resolution: MC vs Exp.
 - ✓ Momentum resolution: MC vs Exp.
 - \checkmark Λ reconstruction: MC vs Exp.
- 4. Summary & Plans

Motivation

✓ In A+A collisions at Nuclotron energies:

Opening thresholds for strange and multi-strange hyperon production

 \rightarrow strangeness at threshold

✓ In *p+p*, *p+n*, *p+A* collisions:

hadron production in elementary reactions and ,cold' nuclear matter as ,reference' to pin down nuclear effects

Motivation

✓ In heavy-ion reactions: production of hypernuclei through coalescence of Λ with light fragments enhanced at high baryon densities.

✓ Maximal yield predicted for \sqrt{s} =4-5A GeV (stat. model) (interplay of Λ and light nuclei excitation function).

 \rightarrow BM@N energy range is suited for the search of hypernuclei.

Detector geometry

BM@N setup:

- ✓ Central tracker (GEM+Si) inside analyzing magnet to reconstruct AA interactions
- ✓ Outer tracker (DCH, CPC) behind magnet to link central tracks to ToF detectors
- ✓ ToF system based on mRPC and T0 detectors to identify hadrons and light nucleus
- ✓ ZDC calorimeter to measure centrality of AA collisions and form trigger
- ✓ Detectors to form T0, L1 centrality trigger and beam monitors
- ✓ Electromagnetic calorimeter for γ ,e+e-

BM@N advantage: large aperture magnet (~1 m gap between poles)

 \rightarrow fill aperture with coordinate detectors which sustain high multiplicities of particles

 \rightarrow divide detectors for particle identification to "near to magnet" and "far from magnet" to measure particles with low as well as high momentum (p > 1-2 GeV/c)

 \rightarrow fill distance between magnet and "far" detectors with coordinate detectors

On behalf of the BM@N collaboration

Technical run in December 2016

Example of an event reconstruction in the central tracker.

On behalf of the BM@N collaboration

VBLHEP, JINR, Dubna, Russia

ICPPA-2017

Technical run in December 2016

On behalf of the BM(a)N collaboration

VBLHEP, JINR, Dubna, Russia

ICPPA-2017

Magnetic field:1600 A (0.79 T)Events:7M (0.76M with A candidates)Beam / Target:d / Cu, $E_{kin} = 4$ AGeVBeam / Target:d / CH_2, $E_{kin} = 4$ AGeVBeam / Target:d / C, $E_{kin} = 4$ AGeVGas in GEM:Ar + IsobuthanGEM position from target:51-86-116-151-181-216 cm

GEM hit residuals without mag. field

✓ X residual of 2-nd station for straight lines (tracks) defined by hit combinations on stations 1 and 3.

✓ An assumption of the same resolution of all three stations leads from the 156 um residual to $\sigma = 127$ um resolution. ($\sigma_x = \sigma_\Delta / \sqrt{1.5} = 156 / \sqrt{1.5} = 127$ um)

Beam trajectory in GEM detectors

- ✓ Averaged positions of deuteron beam with $E_{kin} = 4 \text{ AGeV}$ reconstructed in 6 GEM planes at different values of magnetic field.
- ✓ Opposite electric field direction in consecutive GEM planes.

On behalf of the BM@N collaboration

GEM hit residuals for exp. data.

GEM hit residuals for MC simulation with Garfield parametrization.

ICPPA-2017

Mag. field 0.79 T Gas mixture Ar+ Isobuthan

On behalf of the BM(a)N collaboration

Momentum resolution: Exp. vs MC

- ✓ Momentum resolution for deuteron beam of $9.7 \text{ GeV/c} \sim 9\%$.
- ✓ Momentum resolution for proton spectators with momentum of $4.85 \text{ GeV} \sim 6\%$.
- ✓ Momentum resolution from MC as function of particle momentum.
- ✓ MC results reproduce exp. data for spectator protons and deuteron beam.

Λ reconstruction (d + Cu, C, CH₂)

ICPPA-2017

Signal event topology defined selection criteria:

- ✓ relatively large distance of closest approach (DCA) to primary vertex of decay products
- ✓ small track-to-track separation in decay vertex
- ✓ relatively large decay length of mother particle

A signal width of 3 MeV and background level is reproduced by MC simulation.

 $\Lambda \rightarrow p + \pi^{-}$

Event topology:

- **PV** primary vertex
 - V_0 vertex of hyperon decay
- dca distance of the closest approach
- path decay length

On behalf of the BM@N collaboration

Summary and next plans

- ✓ BM@N experiment is in starting phase of its operation and has recorded first experimental data with deuteron beam of 4 AGeV.
- ✓ Minimum bias interactions of deuteron beam with different targets were analyzed with aim to reconstruct tracks, primary and secondary vertexes using central GEM tracking detectors.
- ✓ Spatial, momentum and primary vertex resolution of GEM tracker are reproduced by Monte Carlo simulation.
- ✓ Signal of Λ -hyperon is reconstructed in proton-pion invariant mass spectrum.
- ✓ To improve vertex and momentum resolution and reduce background under A-hyperon signal, additional planes of GEM detectors and a set of silicon detectors in front of GEM tracking detectors will be implemented.
- ✓ BM@N set-up will extend continuously to adapt its performance for measurements of interactions of heavier ion beams with targets.

Thank you for attention!

On behalf of the BM@N collaboration

Backup slides

4	Dan	7011	CMatt	10
	R	Υ.	\bigcirc	
$\overline{\mathbf{V}}$	- 61	110	Intra	
	~		i faite	

MC-2015	MC-2017	
DCM model (minbias events)	DCM model (minbias events)	
C+C interactions	d+C interactions	
$E_{kin} = 4 \text{ AGeV}$	$E_{kin} = 4 AGeV$	
0.5 M events	1 M events	
GEM position from target: 30-45-60-80-100-130 cm	GEM position from target: 51-86-116-151-181-216 cm	
K_{s}^{0} : 28229 (gen) / 2500 (rec)	K_{s}^{0} : 19020 (gen) / 167 (rec)	
Eff. Rec. = 8.9%	Eff. Rec. = 0.8%	
Magnetic field $B = 0.44$ T	Magnetic field $B = 0.7 T$	

On behalf of the BM@N collaboration

MC-2015	MC-2017	
DCM model (minbias events)	DCM model (minbias events)	
C+C interactions	d+C interactions	
$E_{kin} = 4 \text{ AGeV}$	$E_{kin} = 4 AGeV$	
0.1 M events	1 M events	
GEM position from target: 30-45-60-80-100-130 cm	GEM position from target: 51-86-116-151-181-216 cm	
Λ: 11933 (gen) / 2359 (rec)	Λ: 43432 (gen) / 1832 (rec)	
Eff. Rec.= 19.8%	Eff. Rec.= 4.2%	
Magnetic field $B = 0.44$ T	Magnetic field $B = 0.7 T$	

On behalf of the BM@N collaboration

