

Beam Energy Scan program at RHIC

Olga Evdokimov

For the STAR Collaboration

Outline:

Introduction: QGP discovery Beam Energy Scan program at RHIC RHIC BES-II – physics prospects Outlook

History of HI experiments

 $\frac{1974-1982:}{\text{Bevelac/Berkeley}}$ $\sqrt{s_{nn}} = 0.1-1 \text{ GeV}$

1986-1994:	<u>2000-</u>
AGS/BNL, JINR	RHIC/BNL
1-5 GeV	3(?)-200 GeV

<u>1986-1994:</u>
SPS/CERN
10-20 GeV

<u>2010-</u> LHC/CERN 2.76-5.02 TeV

STAR The STAR Heavy-Ion Program

OCD matter under extreme conditions

Begun with:

(s)OGP Studies
EoS,
Degrees of freedom,

Transport properties

Expanded with:

Beam Energy Scan
QCD critical point search,
Onset of deconfinement,
Chiral symmetry restoration

Multiple theoretical models predict the existence of the Critical Point on the OCD phase diagram

OGP as we know it:

(in one sentence:)

...a strongly interacting thermalized partonic matter with (near) perfect fluidity

- Chemical freeze-out at the predicted phase boundary
- Strong radial and elliptic flow for hadrons (in strange and charm sectors too)

OGP as we know it:

(in one sentence:)

...a strongly interacting thermalized partonic matter with (near) perfect fluidity

New: PRL118(2017)212301

- Hadronization via quark coalescence
- Partonic energy loss in the medium

STAR OCD Critical Point, in theory

smooth crossover at large T and $\mu_B \sim 0$ (LQCD) 1st order transition is predicted at large μ_B Exact location is hard to determine theoretically

Evolution of the system is attracted to the critical point Focusing causes broadening of signal region

Search for QCD Critical point

Experimentally, one can access different regions of phase diagram by varying $\sqrt{s_{NN}}$

STAR BES strategy

Direct signatures of Critical Point Discontinuous trends in fluctuation observables

Search for onset of QGP signatures discovered at highest RHIC energy Number of constituent quark scaling Partonic collectivity Hadron suppression: opacity Local parity violation

RHIC BES program Phase-I

77601

206-11

200CaV

				JUCV	ZUUUUV
√s _{NN} (GeV)	Events (10 ⁶)	Year	⁴ π TPC Au+Au 7.7 GeV	4 π TPC Au+Au 39 GeV	6 π
200	350	2010	3.5 9 Q.2.5	3.5 3 2.5 2.5	5 STAR Preliminary
62.4	67	2010	2 ยั ป้า.	eg 2 d ^L 1.5	с. Се 2 с
54.4	1300	2017	0.5 a KTPCAu+Au 7,7 GeV	0.5 K TPC Au+Au 39 GeV	ep
39	39	2010	3.5 3.5 3 2.5	3.5 3 Q 2.5	5 STAP Preliminary
27	70	2011	P. (Ge)	P, (Ge	p ¹ (GeV
19.6	36	2011	0.5 - TPC - Au+Au 7.7 GeV	0.5 P TPC Au+Au 39 GeV	CeTPCAu+Au 200 GeV
14.5	20	2014	3.5 STAR Preliminary 3 Q 2.5	3.5 STAR Preliminar	s STAR Preliminary
11.5	12	2010	2 d d	Ae 2 d L s	² [−] [−] [−]
7.7	4	2010	0.5 -1 -0.5 0 0.5 1 Rapidity	0.5 0-1-0.5 0.5 1 Panidity	Rapidity

STAR advantage for Critical Point Search: RHIC versatility and particle identification over extended and uniform acceptance Same detector: (partial) cancellation of systematic uncertainties

Particle Identification for BES

STAR

collisions data

Freeze-out Dynamics

Chemical Freeze-out:

STAR

Provides T, $\mu_B\,$ mapping of phase diagram Smoothly evolving trends Generally well described by empirical models

New: arXiv:1701.07065

Kinetic Freeze-out:

Explosive collective expansion Higher radial flow for more central and higher energy collisions

Critical point search zone

Many changing trends below ~20 GeV:

STAR

RHIC Beam Energy Scan

Phase-I (2009 – 2017)

7.7, 11.5, 14.5, 19.6, 27, 39, 54.4 (62.4, 130,200)

Phase-II (2019 - 2020)

9.1, 11.5, 14.5, 19.6 FXT: 3.0, 3.5, 3.9, 4.5, 5.2, 6.2, 7.7 ¹³

STAR Nuclear modification in BES-I

New: arXiv:1707.01988 **STAR Preliminary** 7.7GeV statistical errors only 11.5GeV 14.5GeV R_{CP} [(0-5%)/(60-80%)] 19.6GeV 27GeV 39GeV 62.4GeV 2 3 10 9 p_(GeV/c)

 $R_{\rm CP}$ for hadrons and for charged particles probes partonic energy loss in the medium

BES-I results indicate disappearance of suppression bellow 14.5 GeV

Would like to explore this with identified hadrons (to isolate baryon stopping)

CP signatures: theory

STAR

M.A. Stephanov, PRL107, 052301 (2011). Schaefer&Wanger, PRD 85, 034027 (2012); Divergence of the correlation length is expected near the QCD critical point

Should manifest itself in the non-monotonic behavior of correlations and fluctuations related to conserved quantities

 $<\!(\delta N)^2 > \approx \xi^2, <\!(\delta N)^3 > \approx \xi^{4.5}, <\!(\delta N)^4 > -3 <\!(\delta N)^2 >^2 \approx \xi^7$

Higher moments of conserved quantum numbers (Q, S, B) are more sensitive to the correlation length

 $<\!(\delta N)^2 > \approx \xi^2, <\!(\delta N)^3 > \approx \xi^{4.5}, <\!(\delta N)^4 > -3 <\!(\delta N)^2 >^2 \approx \xi^7$

Theory predicts an oscillation pattern in the energy dependence of the higher order moments

Higher moments in BES-I

STAR

Excitation function for net-proton higher moments ($\kappa\sigma^2$) in 5% most central Au+Au collisions

Changing trends at ~20GeV

Will the oscillation pattern emerge at lower energies?

Caveat: no such trend is seen in netcharge or net-kaon distributions

STAR Directed flow slope in BES-I

Y. Nara, A. Ohnishi, H. Stoecker, arXiv: 1601.07692; PRC94, 034906(2016)

Changes in EoS due to attractive force → Softest point

Such softening can be interpreted as evidence for a first-order phase transition.

STAR Directed flow slope vs. energy

A minimum in the dv_1/dy could indicate the Softest point in EOS

A "dip" is observed for net-proton (and net-Lambdas), but not for net-kaon

Puzzling to have the "Softest point" for only baryons

To date no model reproduces the trend

Need detailed studies extending to low energies

Chiral Phase transition

Dilepton mass spectra can be described by model with QGP+HG phases which include in-medium $\rho\,$ broadening

Need to extend this measurement to low energies

Detector upgrades for BES-II

iTPC

STAR

Continuous pad rows Replace all inner TPC sectors

 $|\eta| < 1.0 \rightarrow |\eta| < 1.5$ Better dE/dx and momentum resolution

EPD

eTOF

Replace Beam-Beam Counter

2.1<|**η**|<5.1

Better triggering and greatly improved EP resolution

Add CBM TOF modules and electronics

-1.6 < n <-1.1

Extend forward PID capability, Extended reach for FXT 20

Detector upgrades for BES-II

BES-II Detector upgrades promises many analysis improvements

Significant improvements in terms of statistical and systematic uncertainties Advanced PID capability Broader kinematic coverage

RHIC Upgrade

STAR

Low Energy Electron Cooling at RHIC Expected luminosity increase by factors 3-10 for BES collision energies

	iTPC	EPD	eTOF
2017	-	1/8 installed	1 prototype
2018	One sector	Full Installation	3 modules at one sector
2019	Full Installation	Full Installation	Full Installation

Directed flow in BES-II

STAR

Possible softening of EoF – a standing prediction for 1st-order phase transition Exploring broader rapidity range in BES-II – dynamics could be different in forward region

STAR STAR in the Fixed Target mode

Proposed Fixed target program will be able to explore $\sqrt{s_{\rm NN}}$ energy range between 3.0 and 7.7 GeV

The target is located just outside the STAR TPC at ~210cm

STAR STAR in the Fixed Target mode

Au+Au @ 4.5 GeV

"Proof of principle" results presented at QM2017, many more underway (Lambdas, Kaons, HBT, v_n,...) √s_{NN} Will be able to extend highmoments measurements to HADES energies

10

20 30

(Net-)protons

HADES 0-10 %

HADES 30-40 %

STAR 0-5 %

STAR 30-40 %

HADES

0

preliminary

3 4 5 6

100 200

- BES-I results indicated turn-off of QGP signatures and hints of critical behavior
- Many critical measurements require larger data samples (higher moments of net-proton distributions, φ-meson flow, di-leptons, ...)
- BES-II program provides a well define plan for the phase diagram exploration:
 - Ongoing detector/facility upgrades will extend kinematic coverage and physics reach
 - Fixed-target program will further extend μ_{B} reach of the energy scan

Looking forward to new measurements revealing signs of the firstorder phase transition and pin-pointing location of the QCD critical point!

Thank you!

*\phi***-meson elliptic flow**

Non-zero ϕ -meson v_2 is indicative of partonic nature of elliptic flow. Departure of the ϕ -meson p_T -integrated v2 values from the ones of protons?

STAR Identified Particle fluctuations

PRC 92(2015)21901

 $K\pi$ fluctuations: tensions between STAR and NA49 results (no energy dependence in STAR measurements, disagreement at 7.7GeV)

 $p\pi$ fluctuations: consistent across entire explored energy range

STAR Predictions for higher moments

Connections with thermodynamics susceptibilities in LOCD and other models (e.g. HRG)

net-baryon fluctuations ~ net-proton number fluctuations

Probe correlation length (ξ)

High moments sensitive to high power of the correlation length

$$<\!(\delta N)^2 > \approx \xi^2, <\!(\delta N)^3 > \approx \xi^{4.5}, <\!(\delta N)^4 > -3 <\!(\delta N)^2 >^2 \approx \xi^7$$

at or near CP non-Gaussian fluctuations expected to dramatically increase

M. A. Stephanov, Phys. Rev. Lett. 102, 032301 (2009)

STAR BUR for 2019

Assuming 24 cryo-weeks

Beam Energy	√s _{NN} (GeV)	Run Time	Species	Number Events	Priority	Sequence
(GeV/nucleon)						
9.8	19.6	4.5 weeks	Au+Au	400M M B	1	1
7.3	14.5	5.5 weeks	Au+Au	300M M B	1	3
5.75	11.5	5 weeks	Au+Au	230M M B	1	5
4.6	9.1 ¹	4 weeks	Au+Au	160M M B	1	7
9.8	4.5(FXT)	2 days	Au+Au	100M M B	2	2
7.3	3.9 (FXT)	2 days	Au+Au	100M M B	2	4
5.75	3.5 (FXT)	2 days	Au+Au	100M M B	2	6
31.2	7.7 (FXT)	2 days	Au+Au	100M M B	2	8
19.5	6.2 (FXT)	2 days	Au+Au	100M M B	2	9
13.5	5.2 (FXT)	2 days	Au+Au	100M M B	2	10

Event number estimates assume low-energy electron cooling ready mid-way through run & performs at design for 11.5 & 9.1 GeV running

Comparison of the facilities

STAR

Facilty	RHIC BESII	SPS	NICA	SIS-100	J-PARC HI
				SIS-300	
Exp.:	STAR	NA61	MPD	CBM	JHITS
	+FXT		+ BM@N		
Start:	2019-20	2009	2020	2022	2025
_	2018		2017		
Energy:	7.7–19.6	4.9-17.3	2.7 - 11	2.7-8.2	2.0-6.2
√s _{NN} (GeV)	2.5-7.7		2.0-3.5		
Rate:	100 HZ	100 HZ	<10 kHz	<10 MHZ	100 MHZ
At 8 GeV	2000 Hz				
Physics:	CP&OD	CP&OD	OD&DHM	OD&DHM	OD&DHM
	Collider Fixed Target	Fixed Target	Collider	Fixed Target	Fixed Target
	collisions		CP = Critical Point		
	_			OD = Onset of Dec	confinement
ompilation b	y Daniel Cebra			DHM = Dense Hac	Ironic Matter