# EWK (Z $\rightarrow$ vv) $\gamma$ process: combination of SM and EXOT analyses



Douglas Schaefer, <u>Evgeny Soldatov</u>



on behalf of SM Z**γ** and Exotics VBF H+**γ** teams

3 March 2021

# Introduction and outline

- Our talks on this topic at SM EWK meetings are 1, 2.
- EXOT analysis closure talk was given last week, <u>link</u>.
   5.2(5.1)σ of observed(expected) significance obtained.
- SM Z(vv) $\gamma$  VBS analysis (close to SM approval) shows ~4 $\sigma$  of the expected significance.
- Since the signal extraction regions are independent, we are working on the combination.
- So the aim of this talk is to discuss the preliminary combination results and possible issues.

# Main selections and backgrounds (SM analysis)



## Data-driven backgrounds:

- $e \rightarrow \gamma$  (mainly from W[ev]),
- $jet \rightarrow \gamma$  (mainly from Z[vv]+jet),
- fake  $E_T$ [miss] (mainly from  $\gamma$ +jet) together constitute ~13% of the total yield (see next slide for the methodologies)

## Backgrounds estimated from the fit in CRs:

- QCD  $Z(vv)\gamma$  (using  $Z\gamma$  CRs)
- $W(I\nu)\gamma$ ,  $tt\gamma$  (using  $W\gamma$  CR)

## **Directly from MC:**

•  $Z(II)\gamma$  (<1% of the total event yield)

SM EWK plenary

# Main selections (EXOT analysis)

 $\gamma$  -centrality rev.

| Period              | Trigger                |
|---------------------|------------------------|
| All 2015            | HLT_xe70_mht           |
| 2016, Runs ≤ 302872 | HLT_xe90_mht_L1XE50    |
| 2016, Runs > 302872 | HLT_xe110_mht_L1XE50   |
| 2015-2016           | HLT_noalg_J400         |
| 2017 Runs           | HLT_xe110_pufit_L1XE55 |
| 2018 Runs           | HLT_xe110_xe70_L1XE50  |
|                     |                        |

- MET triggered events .
- PFlow jets p<sub>T</sub>>25 GeV ٠
- Tight photons with FCLoose Iso
  - 15 GeV < pT <110 GeV</li>
- Loose muons, LooseLH electron ٠ veto

|                                       | Table 1  |                                       |               |
|---------------------------------------|----------|---------------------------------------|---------------|
| Cut                                   | inv.     | $W(\rightarrow \mu \nu)\gamma$ + jets |               |
| Lepton Flavours                       | 0        | $e^-/e^+$                             | $\mu^-/\mu^+$ |
| "Veto" muons and electrons            | 0        | 1                                     | 1             |
| "Signal" muons and electrons          | 0        | 1                                     | 1             |
| $p_{\mathrm{T}}(\ell_1)$              | -        | >30 GeV                               | >30 GeV       |
| $p_{\mathrm{T}}(\ell_2)$              | _        | _                                     | -             |
| $ M(\ell\ell) - M_Z $                 | -        | -                                     | -             |
| $E_{\rm T}^{\rm miss}$ (with leptons) | > 80 GeV | -                                     | 4 -           |

|                                           | Cut                                     | SR        |
|-------------------------------------------|-----------------------------------------|-----------|
|                                           | Nphoton                                 | =1        |
|                                           | N <sub>baseline-lepton</sub>            | =0        |
| -centrality rev. CR                       | Njet                                    | =2,3      |
|                                           | N <sub>b-jet</sub> (77% WP)             | <2        |
|                                           | Рт(j1)                                  | > 60 GeV  |
| $W\gamma - 1\mu$ or $1e CR$               | Рт(j2)                                  | > 50 GeV  |
|                                           | MET                                     | > 150 GeV |
|                                           | MET_CST_jet                             | > 120 GeV |
| SR - 0Lepton                              | η(j <sub>1</sub> ) × η(j <sub>2</sub> ) | <0        |
| -                                         | Δη(j <sub>1</sub> ,j <sub>2</sub> )     | > 3.0     |
|                                           | Δφ(j <sub>1</sub> ,j <sub>2</sub> )     | < 2.5     |
|                                           | Δφ(j <sub>1,2,3</sub> ,MET)             | >1        |
|                                           | abs. Δφ(MET,photon)                     | > 1.8     |
| $(\rightarrow \mu\nu)\nu + \text{iets}$   | Photon Centrality                       | > 0.4     |
| $\frac{\mu^{-}/\mu^{+}}{\mu^{-}/\mu^{+}}$ | Third jet centrality                    | < 0.7     |
| 1                                         | M(j <sub>1</sub> ,j <sub>2</sub> )      | > 250 GeV |
| 1<br>>30 GeV                              | Photon PT                               | < 110 GeV |
| -                                         | abs(Photon Pointing)                    | < 250 mm  |

lead two jets fjvt>0.4

## SM EWK plenary

# Fit setup overview (SM analysis)

|            | Comple   | Norm coof      | Systematic un        | certainties    |  |  |  |  |
|------------|----------|----------------|----------------------|----------------|--|--|--|--|
|            | Sample   | Norm. coer     | Designated           | Common         |  |  |  |  |
| ed         | Zγjj EWK | mu(ZγEWK), POI | Theory, interference |                |  |  |  |  |
| lat        | Zyjj QCD | mu(ZγQCD)      | Theory               |                |  |  |  |  |
| tin        | Wy EWK   |                | Theory               |                |  |  |  |  |
| est        | Wy QCD   | mu(Wγ)         | Theory               | - Experimentai |  |  |  |  |
| MC         | ttγ      | -              | Theory               | -              |  |  |  |  |
| _          | Z(II)+γ  |                | Theory               |                |  |  |  |  |
| _ c        | e -> γ   |                | Data-driven flat     |                |  |  |  |  |
| ata<br>ive | j+γ      |                | Data-driven flat     |                |  |  |  |  |
| <u> </u>   | j->γ     |                | Data-driven flat     |                |  |  |  |  |
|            |          |                |                      |                |  |  |  |  |

### **Templates:**

- mjj in the control regions
- BDT classifier response in the signal region

To account for limited MC statistics there is also an NP for every bin with MC stat error > 5%

|          | SR | ZYQCD CR 1 | ZYQCD CR 2 | Wγ |
|----------|----|------------|------------|----|
| μ(ZγEWK) | V  | V          | V          |    |
| μ(ZγQCD) | V  | V          | V          |    |
| μ(Wγ)    | V  | V          | V          | V  |

## The fit is performed in **3 steps**:

- 1. Fit MC to data in CRs with  $\mu$ (ZyQCD) and  $\mu$ (Wy) as parameters of interest (POI).
- 2. Use fitted parameter values (norm.coef + NPs) to create Asimov pseudodata.
- 3. Fit MC to Asimov pseudodata in all regions with  $\mu$ (ZyEWK) as POI and obtain the estimated median discovery significance.

# Regions definition and fit setup (EXOT analysis)

## · Control Regions:

- 1 lepton regions binned in mjj
  - Used to extract the normalization of the Wγ backgrounds
- photon centrality reversed region binned in m<sub>jj</sub>
  - Used to extract normalization of the Zy strong background
- · Signal Regions:
  - · 0 lepton regions
  - Bins used in the maximum LH fit to extract signal in 4 m<sub>jj</sub> bins

|                     | SR           | $Z\gamma$ QCD rev. $\gamma$<br>Centrality CR 2 | $W\gamma$ CR |  |
|---------------------|--------------|------------------------------------------------|--------------|--|
| $\mu_{Z\gamma EWK}$ | ~            | ~                                              |              |  |
| HZyQCD              | ~            | $\checkmark$                                   |              |  |
| $\mu_{W\gamma}$     | $\checkmark$ | ~                                              | $\checkmark$ |  |

Table 81: Table of regions where the normalization coefficients are used to calculate the likelihood function.

So the setups were well harmonized between analyses.

## SM EWK plenary

# **Theoretical systematic uncertainties**



1 NP per combination of sample and systematic, e. g.  $\alpha$ (tty UE+PS),  $\alpha$ (WyQCD alt PDF set), except for scale.

## Scale:

4 NPs per sample for:

- Ŵy CR
- ZyQCD CR1
- ZyQCD CR2

SR

## Modelling

**Zy QCD -** Difference between MadGraph and Sherpa samples was taken as modelling, Sherpa used as a central value.

**Wy QCD** - no alternative sample available, made by with the ZgQCD modelling systematic relative uncertainties (see backup for more info)

**tty** - only fastsim alternative sample available, made by comparing fastsim nominal sample with fastsim alternative sample

**Zyjj QCD** and **Wy QCD scale** uncertainties are omitted since they only affect the normalization and tend to double the designated normalization coefficients in the likelihood model.

# Zγjj EWK and QCD interference as systematic uncertainty

The interference between Zyjj EWK and QCD processes is treated as systematic uncertainty for the Zyjj EWK in 3 regions:

- ZyQCD CR 1
- ZyQCD CR 2
- SR

1 NP for all 3 regions

**+σ** Zγjj EWK + interference

Nominal Zyjj EWK

-σ Zγjj EWK + interference



# **Theory uncertainties (EXOT analysis)**

- Strong-EWK interference
  - Computed the LO strong-EWK Zg interference at truth level
  - Applied as an uncertainty on the EWK Zg as a function mjj
    - · the impact is very small
- MG vs Sherpa Zg strong comparison
  - · Compared for Z(II)g at reco level
  - Full difference between MG & Sherpa taken as a systematic uncertainty with Sherpa as the central value
  - Same relative shape uncertainty is applied to Wg strong
  - Wg strong and Zg strong MG Comparison syst is not correlated because of differences in agreement with data in loosened CRs





#### SM EWK plenary

# Theory uncertainties correlation model (EXOT analysis)

| Theory Sys.            | SR<br>(m <sub>jj</sub> ><br>500 GeV) | SR<br>(250 <<br>m <sub>jj</sub> <<br>500 GeV) | $Z\gamma$ QCD rev. $\gamma$<br>Centrality CR 2 | Wγ CR        |                                     |
|------------------------|--------------------------------------|-----------------------------------------------|------------------------------------------------|--------------|-------------------------------------|
| pdf_Wg_strong          | ~                                    | ~                                             | ~                                              | ~            |                                     |
| pdf_Zg_strong          | ~                                    | ~                                             | ~                                              | $\checkmark$ |                                     |
| pdf_Zg_EWK             | <ul> <li></li> </ul>                 | ~                                             | $\checkmark$                                   | $\checkmark$ |                                     |
| pdf_Wg_EWK             | ~                                    | ~                                             | ~                                              | $\checkmark$ |                                     |
| renofact_Wg_strong     | ~                                    | ~                                             | ~                                              | ~            |                                     |
| renofact_Zg_strong     | ~                                    | ~                                             | <li></li>                                      | 0            | Decorrelated to avoid pulls in      |
| renofact_Zg_EWK        | <ul> <li>✓</li> </ul>                | $\oplus$                                      | $\otimes$                                      | $\odot$      | the Liester CD Has alwards          |
| renofact_Wg_EWK        | ~                                    | $\oplus$                                      | $\otimes$                                      | $\odot$      | the 1-lepton CK. Has almost ho      |
| ps_Zg_EWK              | ~                                    | ~                                             | ~                                              | $\odot$      | impact because the                  |
| ps_Wg_EWK              | ~                                    | ~                                             | _                                              | ~            | contamination is $\sim 1\%$ in that |
| interfer_Zg_EWK        | ~                                    | ~                                             | ~                                              | $\checkmark$ | CR                                  |
| MGComparison_Wg_strong | ~                                    | ~                                             | ~                                              | $\checkmark$ |                                     |
| MGComparison_Zg_strong | ~                                    | ~                                             | $\checkmark$                                   | $\checkmark$ |                                     |

Table 118: List of correlations for the theory uncertainties. The same symbol indicates that the uncertainty is correlated across the SRs and CRs. Each line is uncorrelated with the other lines.

|   | I wanted to be a first second affect of a first | Central value                                               | Exp. Signifiance |
|---|-------------------------------------------------|-------------------------------------------------------------|------------------|
| • | Largest impact from correlation models          | Model config in Table 118                                   | 5.1 <i>o</i>     |
|   | comes from the choice to not correlate MG vs    | Correlate MGComparison between Wy+ jets and Zy+ jets strong | $4.9\sigma$      |
|   | comes nom the endice to not content vs          | Correlate systematics across all bins (no CR decorrelation) | 5.1 <i>o</i>     |
|   | Sherpa differences in the Wg and Zg strong      | Correlate ps_Zg_EWK across all bins                         | 5.1 <i>o</i>     |

## SM EWK plenary

# **Experimental systematic uncertainties**

| Туре               | Set                       | 1 NP per systematic type for every background estimated from                             |  |  |  |  |  |  |  |
|--------------------|---------------------------|------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
| JES                | 30 NPs, CategoryReduction | <b>the MC</b> , e.g. α(JET_EffectiveNP_Detector1)                                        |  |  |  |  |  |  |  |
| JER                | 8 NPs, SimpleJER          |                                                                                          |  |  |  |  |  |  |  |
| MET                | 3 NPs                     | The systematics are prupped using the following rules                                    |  |  |  |  |  |  |  |
| e/γ                | 2 NP, "1NP set"           | The systematics are prunned using the following rules.                                   |  |  |  |  |  |  |  |
| Muon               | 10 NPs                    | • The normalization part is dropped if the total effect on the overt yield is $< 1\%$    |  |  |  |  |  |  |  |
| e efficiency       | 3 NPs                     | $e^{-1}$                                                                                 |  |  |  |  |  |  |  |
| γ efficiency       | 2 NPs                     | • The shape part is dropped if there's no bins with effect on the overt yield is $> 1\%$ |  |  |  |  |  |  |  |
| Trigger efficiency | 1 NP                      | Event yield is $> 1\%$                                                                   |  |  |  |  |  |  |  |
| JVT efficiency     | 1 NP                      |                                                                                          |  |  |  |  |  |  |  |
| PRW                | 1 NP                      |                                                                                          |  |  |  |  |  |  |  |
| Luminosity         | 1 NP                      | Flat 1 00/ evetage ations a consumption with the                                         |  |  |  |  |  |  |  |
| Pile-up bkg        | 1 NP                      | Flat 1.9% systematic to account for pile-up                                              |  |  |  |  |  |  |  |

Every background with **data-driven estimations** also have an NP for their estimated systematic (see slide 5) which results in 3 more NPs

# **Fit results**

## Background only fit



## Asimov data fit

| μ(ZγEWK) | 1.04 <sup>+0.27</sup> 0.25 (stat) <sup>+0.24</sup> 0.17 (syst) |
|----------|----------------------------------------------------------------|
| μ(ZγQCD) | 1.08 ± 0.08 (stat) <sup>+0.16</sup> (syst)                     |
| μ(Wγ)    | 1.09 ± 0.04 (stat) <sup>+0.20</sup> (syst)                     |

Expected median significance: **3.8**  $\sigma$ 

# Systematic uncertainties ranking and correlations



| EG_SCALE_ALL                   | 100.0        | 0.4                    | -0.7                  | 0.0   | 0.2                  | 0.3                  | 0.4               | 1.7               | -0.3       | 0.0                     | 1.0        | 0.6                                           | -0.4                          | 0.0              | -0.1             | 0.0                                            | -0.8                              | -0.5                          | 1.9                | 0.4            | -3.7           | 0.5                 | -3.0      | -14.1     | -18.1 |
|--------------------------------|--------------|------------------------|-----------------------|-------|----------------------|----------------------|-------------------|-------------------|------------|-------------------------|------------|-----------------------------------------------|-------------------------------|------------------|------------------|------------------------------------------------|-----------------------------------|-------------------------------|--------------------|----------------|----------------|---------------------|-----------|-----------|-------|
| JET_Flavor_Composition         | 0.4          | 100.0                  | -1.0                  | 0.0   | -0.3                 | -0.1                 | -0.6              | -1.4              | 1.7        | 0.0                     | 0.2        | 0.4                                           | 0.6                           | 0.1              | -0.0             | 0.1                                            | 2.6                               | -0.3                          | -0.2               | -0.7           | 1.3            | -0.0                | -1.6      | -15.8     | -6.8  |
| JET_JER_EffectiveNP_1          | -0.7         | -1.0                   | 100.0                 | -0.0  | 0.2                  | 0.8                  | -0.4              | -2.7              | 1.0        | -0.0                    | 3.1        | -3.0                                          | -0.6                          | 0.2              | -0.0             | -0.0                                           | -3.2                              | -1.4                          | -0.5               | 1.4            | 0.1            | 0.3                 | 6.2       | 6.7       | 10.1  |
| Lumi                           | 0.0          | 0.0                    | -0.0                  | 100.0 | -0.0                 | -0.0                 | -0.0              | 0.0               | -0.0       | 0.0                     | 0.0        | 0.0                                           | 0.0                           | 0.0              | 0.0              | 0.0                                            | -0.0                              | 0.0                           | 0.0                | 0.0            | -0.0           | 0.0                 | -5.8      | -11.7     | -12.5 |
| MET_SoftTrk_ResoPara           | 0.2          | -0.3                   | 0.2                   | -0.0  | 100.0                | -0.9                 | 0.0               | -1.3              | 0.1        | -0.0                    | -0.3       | -1.1                                          | -0.5                          | 0.1              | -0.1             | -0.0                                           | -0.9                              | 0.0                           | -0.8               | 0.6            | 1.0            | 0.1                 | 4.5       | 14.8      | 16.7  |
| MET_SoftTrk_ResoPerp           | 0.3          | -0.1                   | 0.8                   | -0.0  | -0.9                 | 100.0                | 0.1               | -1.2              | -0.1       | -0.0                    | 0.3        | -1.0                                          | -0.5                          | -0.1             | -0.1             | -0.0                                           | 0.1                               | -0.6                          | -1.7               | 0.5            | 1.5            | 0.8                 | 4.7       | 20.2      | 20.1  |
| MET_SoftTrk_Scale              | 0.4          | -0.6                   | -0.4                  | -0.0  | 0.0                  | 0.1                  | 100.0             | -0.8              | 0.7        | -0.0                    | 0.1        | -0.5                                          | 0.9                           | -0.0             | 0.1              | 0.0                                            | 0.5                               | 0.6                           | -0.9               | -0.0           | 1.3            | -0.5                | 1.1       | 11.8      | 12.7  |
| MUON_EFF_ISO_STAT              | 1.7          | -1.4                   | -2.7                  | 0.0   | -1.3                 | -1.2                 | -0.8              | 100.0             | 0.6        | 0.0                     | 1.3        | -4.5                                          | 1.4                           | -0.2             | 0.3              | 0.0                                            | -1.6                              | 1.5                           | -4.7               | 2.1            | 8.9            | -0.2                | 6.9       | 44.7      | -58.8 |
| PRW_DATASF                     | -0.3         | 1.7                    | 1.0                   | -0.0  | 0.1                  | -0.1                 | 0.7               | 0.6               | 100.0      | -0.0                    | -0.0       | 1.8                                           | 0.7                           | -0.2             | -0.1             | -0.0                                           | -1.3                              | -0.5                          | 1.0                | 0.2            | -0.7           | 0.7                 | 8.8       | 3.4       | 14.4  |
| Pileup background yield        | 0.0          | 0.0                    | -0.0                  | 0.0   | -0.0                 | -0.0                 | -0.0              | 0.0               | -0.0       | 100.0                   | 0.0        | 0.0                                           | 0.0                           | 0.0              | 0.0              | 0.0                                            | -0.0                              | 0.0                           | 0.0                | 0.0            | -0.0           | 0.0                 | -5.8      | -11.7     | -12.5 |
| γ+jet syst                     | 1.0          | 0.2                    | 3.1                   | 0.0   | -0.3                 | 0.3                  | 0.1               | 1.3               | -0.0       | 0.0                     | 100.0      | 2.2                                           | -2.0                          | 0.4              | -0.4             | 0.1                                            | 2.2                               | -0.4                          | 0.3                | -1.7           | 1.9            | -2.0                | 2.4       | -22.3     | -2.6  |
| QCD Sherpa vs MG (CRs, low SR) | 0.6          | 0.4                    | -3.0                  | 0.0   | -1.1                 | -1.0                 | -0.5              | -4.5              | 1.8        | 0.0                     | 2.2        | 100.0                                         | -2.3                          | 0.3              | -0.2             | 0.1                                            | -7.2                              | -2.1                          | -5.0               | 4.5            | 3.3            | -1.7                | -3.4      | 5.6       | 10.4  |
| Wy QCD Sherpa vs MG (high SR)  | -0.4         | 0.6                    | -0.6                  | 0.0   | -0.5                 | -0.5                 | 0.9               | 1.4               | 0.7        | 0.0                     | -2.0       | -2.3                                          | 100.0                         | 1.0              | -1.4             | -0.1                                           | -3.0                              | -6.6                          | -2.4               | -1.7           | 0.6            | 1.8                 | -10.6     | -1.2      | -2.6  |
| Z(vv)y EWK UE+PS               | 0.0          | 0.1                    | 0.2                   | 0.0   | 0.1                  | -0.1                 | -0.0              | -0.2              | -0.2       | 0.0                     | 0.4        | 0.3                                           | 1.0                           | 100.0            | 0.2              | -0.0                                           | 0.8                               | 1.1                           | 0.2                | 0.1            | -0.2           | 0.6                 | -25.7     | 0.9       | 0.3   |
| Zγ EWK scale, SR               | -0.1         | -0.0                   | -0.0                  | 0.0   | -0.1                 | -0.1                 | 0.1               | 0.3               | -0.1       | 0.0                     | -0.4       | -0.2                                          | -1.4                          | 0.2              | 100.0            | -0.0                                           | -0.7                              | -1.7                          | -0.4               | -0.3           | 0.1            | 0.3                 | -26.5     | 1.8       | -0.5  |
| Zy QCD NNPDF unc. + $\alpha_s$ | 0.0          | 0.1                    | -0.0                  | 0.0   | -0.0                 | -0.0                 | 0.0               | 0.0               | -0.0       | 0.0                     | 0.1        | 0.1                                           | -0.1                          | -0.0             | -0.0             | 100.0                                          | 0.0                               | -0.1                          | -0.1               | -0.2           | 0.0            | 0.5                 | -0.2      | -15.8     | -0.1  |
| QCD Sherpa vs MG (CRs, low SR) | -0.8         | 2.6                    | -3.2                  | -0.0  | -0.9                 | 0.1                  | 0.5               | -1.6              | -1.3       | -0.0                    | 2.2        | -7.2                                          | -3.0                          | 0.8              | -0.7             | 0.0                                            | 100.0                             | -2.9                          | -0.6               | 4.4            | -1.2           | -1.0                | -1.9      | 19.5      | -0.3  |
| Zγ QCD Sherpa vs MG (high SR)  | -0.5         | -0.3                   | -1.4                  | 0.0   | 0.0                  | -0.6                 | 0.6               | 1.5               | -0.5       | 0.0                     | -0.4       | -2.1                                          | -6.6                          | 1.1              | -1.7             | -0.1                                           | -2.9                              | 100.0                         | -2.4               | -0.4           | 0.6            | 1.1                 | -33.3     | 1.6       | -2.8  |
| tty hadronization              | 1.9          | -0.2                   | -0.5                  | 0.0   | -0.8                 | -1.7                 | -0.9              | -4.7              | 1.0        | 0.0                     | 0.3        | -5.0                                          | -2.4                          | 0.2              | -0.4             | -0.1                                           | -0.6                              | -2.4                          | 100.0              | -0.5           | 9.3            | 1.8                 | -8.1      | -23.2     | 48.2  |
| ttγ scale, SR                  | 0.4          | -0.7                   | 1.4                   | 0.0   | 0.6                  | 0.5                  | -0.0              | 2.1               | 0.2        | 0.0                     | -1.7       | 4.5                                           | -1.7                          | 0.1              | -0.3             | -0.2                                           | 4.4                               | -0.4                          | -0.5               | 100.0          | 1.6            | 2.6                 | -1.7      | -0.6      | -1.2  |
| ttγ scale, Wg                  | -3.7         | 1.3                    | 0.1                   | -0.0  | 1.0                  | 1.5                  | 1.3               | 8.9               | -0.7       | -0.0                    | 1.9        | 3.3                                           | 0.6                           | -0.2             | 0.1              | 0.0                                            | -1.2                              | 0.6                           | 9.3                | 1.6            | 100.0          | 0.1                 | 4.6       | 33.9      | -37.1 |
| ttγ scale, Z γQCD 1            | 0.5          | -0.0                   | 0.3                   | 0.0   | 0.1                  | 0.8                  | -0.5              | -0.2              | 0.7        | 0.0                     | -2.0       | -1.7                                          | 1.8                           | 0.6              | 0.3              | 0.5                                            | -1.0                              | 1.1                           | 1.8                | 2.6            | 0.1            | 100.0               | 2.6       | -15.7     | 0.9   |
| $\mu(Z\gamma EWK)$             | -3.0         | -1.6                   | 6.2                   | -5.8  | 4.5                  | 4.7                  | 1.1               | 6.9               | 8.8        | -5.8                    | 2.4        | -3.4                                          | -10.6                         | -25.7            | -26.5            | -0.2                                           | -1.9                              | -33.3                         | ~8.1               | -1.7           | 4.6            | 2.6                 | 100.0     | -1.6      | -4.8  |
| $\mu(Z\gamma \text{ QCD})$     | -14.1        | -15.8                  | 6.7                   | -11.7 | 14.8                 | 20.2                 | 11.8              | 44.7              | 3.4        | -11.7                   | -22.3      | 5.6                                           | -1.2                          | 0.9              | 1.8              | -15.8                                          | 19.5                              | 1.6                           | -23.2              | -0.6           | 33.9           | -15.7               | -1.6      | 100.0     | -33.8 |
| $\mu(W\gamma)$                 | -18.1        | -6.8                   | 10.1                  | -12.5 | 16.7                 | 20.1                 | 12.7              | -58.8             | 14.4       | -12.5                   | -2.6       | 10.4                                          | -2.6                          | 0.3              | -0.5             | -0.1                                           | -0.3                              | -2.8                          | 48.2               | -1.2           | -37.1          | 0.9                 | -4.8      | -33.8     | 100.0 |
|                                | EG_SCALE_ALL | JET_Flavor_Composition | JET_JER_EffectiveNP_1 | Lumi  | MET_SoftTrk_ResoPara | MET_SoftTrk_ResoPerp | MET_SoftTrk_Scale | MUON_EFF_ISO_STAT | PRW_DATASF | Pileup background yield | γ+jet syst | V <sub>7</sub> OCD Sherpa vs MG (CRs, Iow SR) | Wr QCD Sherpa vs MG (high SR) | Z(vv)] EWK UE+PS | ZY EWK scale, SR | Z <sub>7</sub> QCD NNPDF unc. + α <sub>s</sub> | Zr OCD Sherpa vs MG (CRs, Iow SR) | Zr QCD Sherpa vs MG (high SR) | tt y hadronization | ttry scale, SR | ttry scale, Wg | tty scale, Z yOCD 1 | μ(ZY EWK) | μ(Zγ QCD) | μ(WY) |

# Fit results (EXOT analysis)



Observed(expected) significance: **5.2(5.1)***σ* 

SM EWK plenary

# PreFit vs PostFit



- SR bins
- \* Observed (expected) significance  $5.2\sigma$  ( $5.1\sigma$ ) for EWK Zgjj

SM EWK plenary

## Discussion

Differences that we currently see:

- AntiKt4Topo vs PFlowJets jets. Actually there are combinations of analyzes with different jet collections in ATLAS.
- **Simple JER vs Full JER.** The impact of JER systematics on the final result is small.
  - We are correlating alpha\_JET\_JER\_EffectiveNP\_{1..6}, alpha\_JET\_JER\_DataVsMC\_MC16 between analyses.
- JET veto. EXOT analysis has jet veto (only events with 2-3 jets are allowed), SM analysis doesn't have jet veto.

If you see any other possible problems/issues - it would be very useful for us!

We are combining two workspaces using workspaceCombiner tool.

Same systematics in different workspaces are described by the same NPs.

- Data-driven background NPs are not correlated (different methods): SinglePhotons, ZnunulsoGap, WenuSyst (SM) JetFakePh\*, GJet\*, EFakePh\* (EXOT)
- Also not correlated NPs:

TriggerEff, PileUpBkg, ttgam\_mur2\_muf1\_\* (SM)

xeSFTriggerWeight, renofact\_\* (EXOT)

Since the triggers are different, pile-up background is not significant in EXOT study.

Scale uncertainties were removed in SM analysis, since they are flat and can be fully accounted by normalizations. More details in backup.

## SM pulls plot for combination

|    |                                       |         | ttgam_mur2_muf1_ZgQCD_2            | 1    |                                       | MUON EFF TTVA SYS                         |
|----|---------------------------------------|---------|------------------------------------|------|---------------------------------------|-------------------------------------------|
|    |                                       |         | ttgam_mur2_muf1_ZgQCD_1            |      |                                       | MUON_EFF_TTVA_STAT                        |
|    | · · · · · · · · · · · · · · · · · · · |         | ttgam mur2 muf1 Wg                 |      |                                       | MUON_EFF_RECO_SYS_LOWPT                   |
|    |                                       |         | the mur2 muf1 SB                   |      |                                       | MUON_EFF_RECO_SYS                         |
|    |                                       |         | tteam PDE a s                      |      |                                       | MUON_EFF_RECO_STAT_LOWPT                  |
|    |                                       |         | tteemlinde                         |      |                                       | MUON_EFF_RECO_STAT                        |
|    |                                       |         | ttgamHadr                          |      |                                       | MUON_EFF_ISO_SYS                          |
|    |                                       |         | ZnunuisoGap                        |      |                                       | MUON_EFF_ISO_STAT                         |
|    | • • • • • • • • • • • • • • • • • • • |         | Zilgam_PDF_a_s                     |      |                                       | MET_SoftTrk_Scale                         |
|    |                                       |         | Zllgam_MUR2_MUF2_PDF261000_ZgQCD_2 |      |                                       | MET_SoftTrk_ResoPerp                      |
|    |                                       |         | Zllgam_MUR2_MUF2_PDF261000_ZgQCD_1 |      |                                       | MET_SoftTrk_ResoPara                      |
|    |                                       |         | Zligam MUR2 MUF2 PDF261000 Wg      |      |                                       | Lumi<br>JET, Sizal-Dastiela, HiskDt       |
|    |                                       |         | Zilgam MUB2 MUE2 PDE261000 SB      |      |                                       | JET_SingleFanticle_HighFt                 |
|    |                                       |         | Zilgam MMHT2014 PDE                |      |                                       | JET_Pileun_BhoTopology                    |
|    |                                       |         | ZaOCD Shara va MC highSP           |      |                                       | JET Pileup PtTerm                         |
|    |                                       |         |                                    |      |                                       | JET Pileup OffsetNPV                      |
|    |                                       |         | ZgQCD_Snera_vs_MG                  |      |                                       | JET Pileup OffsetMu                       |
|    |                                       |         | ZgQCD_PDF_a_s                      |      |                                       | JET JvtEfficiency                         |
|    | · · · · · · · · · · · · · · · · · · · |         | ZgQCD_MMHT2014_PDF                 |      | · · · · · · · · · · · · · · · · · · · | JET JER EffectiveNP 7restTerm             |
|    | · · · · · · · · · · · · · · · · · · · |         | ZgInterference                     |      | · · · · · · · · · · · · · · · · · · · | JET_JER_EffectiveNP_6                     |
|    |                                       |         | ZgEWK mur2 muf2 ZgQCD 2            |      | · · · · · · · · · · · · · · · · · · · | JET_JER_EffectiveNP_5                     |
|    |                                       |         | ZaEWK mur2 muf2 ZaQCD 1            |      | · · · · · · · · · · · · · · · · · · · | JET_JER_EffectiveNP_4                     |
|    |                                       |         | ZaEWK mur2 mur2 Wa                 |      | • • • • • • • • • • • • • • • • • • • | JET_JER_EffectiveNP_3                     |
|    |                                       |         | ZgEWK_mur2_mur2_mur2_SP            |      | • • • • • • • • • • • • • • • • • • • | JET_JER_EffectiveNP_2                     |
|    |                                       |         |                                    |      | • • • • • • • • • • • • • • • • • • • | JET_JER_EffectiveNP_1                     |
|    | •                                     |         | ZgEWK_PDF_a_s                      |      | •                                     | JET_JER_DataVsMC_MC16                     |
|    | • • • • • • • • • • • • • • • • • • • |         | ZgEWK_MMHT2014_PDF                 |      |                                       | JET_Flavor_Response                       |
|    | · · · · · · · · · · · · · · · · · · · |         | ZgEWKHadr                          |      |                                       | JET_Flavor_Composition                    |
|    | •••••                                 |         | Wgam_PDF_a_s                       |      | and a second second                   | JEI_EtaIntercalibration_LotaIStat         |
|    | · · · · · · · · · · · · · · · · · · · |         | Wgam_MMHT2014_PDF                  |      |                                       | JET_EtaIntercalibration_NonClosure_poseta |
|    |                                       |         | WgamEWK mur2 muf2 ZgQCD 2          |      |                                       | JET_EtaIntercalibration_NonClosure_highE  |
|    |                                       |         | WgamEWK mur2 muf2 7aOCD 1          |      |                                       | JET_EtaIntercalibration_NonClosure_Ngne   |
|    |                                       |         | WgamEWK mur2 muf2 Wg               |      |                                       | JET_EtaIntercalibration_Modelling         |
|    |                                       |         | WgamEWK mut2 mut2 SD               |      |                                       | JET EffectiveNP Statistical6              |
|    |                                       |         | Wganewk_nuiz_nuiz_on               |      |                                       | JET EffectiveNP Statistical5              |
|    |                                       |         | WgamEWK_PDF_a_s                    |      | <b>_</b>                              | JET EffectiveNP Statistical4              |
|    |                                       |         | WgamEWK_MMHT2014_PDF               |      | <b>_</b>                              | JET_EffectiveNP_Statistical3              |
|    |                                       |         | WgModelling_highSR                 |      | <b>_</b>                              | JET_EffectiveNP_Statistical2              |
|    | · · · · · · · · · · · · · · · · · · · |         | WgModelling                        |      |                                       | JET_EffectiveNP_Statistical1              |
|    |                                       |         | WgEWKHadr                          |      | • • •                                 | JET_EffectiveNP_Modelling4                |
|    |                                       |         | WenuSyst                           |      | • • • • • • • • • • • • • • • • • • • | JET_EffectiveNP_Modelling3                |
|    |                                       |         | TriggerEff                         |      | • • • • • • • • • • • • • • • • • • • | JET_EffectiveNP_Modelling2                |
|    |                                       |         | SingleDhotonSust                   |      | •                                     | JET_EffectiveNP_Modelling1                |
|    |                                       |         | Dilage Deckersund                  |      |                                       | JET_EffectiveNP_Mixed3                    |
|    |                                       |         | PileupBackground                   |      |                                       | JET_EffectiveNP_Mixed2                    |
|    | •                                     |         | PRW_DATASF                         |      |                                       | JET_EffectiveNP_Dotector2                 |
|    | • • • • • • • • • • • • • • • • • • • |         | PH_EFF_ISO_Uncertainty             |      |                                       | JET_EffectiveNP_Detector2                 |
|    |                                       |         | PH_EFF_ID_Uncertainty              |      |                                       | JET BIES Beroonse                         |
|    |                                       |         | MUON_SCALE                         |      |                                       | EL EEE BECO TOTAL INPCOB PLUS UNCOB       |
|    |                                       |         | MUON SAGITTA RHO                   |      |                                       | EL EFF Iso TOTAL INPCOB PLUS UNCOB        |
|    |                                       |         | MUON SAGITTA BESBIAS               |      |                                       | EL EFF ID TOTAL 1NPCOR PLUS UNCOR         |
|    |                                       |         | MUON MS                            |      | • • •                                 | EG SCALE ALL                              |
|    |                                       |         |                                    | la e | 1111 ++++ ++++                        | EG_RESOLUTION_ALL                         |
|    |                                       |         |                                    |      | 3 1 0 1                               | 2                                         |
|    |                                       | 100.000 | EG_BOALE_ALL                       | -    | -2 -1 0 1<br>(Â-0.)/A0                | 2                                         |
| ШШ |                                       |         | JEG_RESOLUTION_ALL                 |      | (0-00)/20                             |                                           |
| _  | -2 -1 0 1                             | 2       |                                    |      |                                       |                                           |
|    | (Ê-0.)/A0                             |         |                                    |      |                                       |                                           |
|    | (0-00)/20                             |         |                                    |      |                                       |                                           |

## SM EWK plenary

## **EXOT** pulls plot for combination





### SM EWK plenary

0.1 0.15

Jet



## CR extrapolation



### SM EWK plenary

## Lepton







Amu EWK

0.1 0.15



### SM EWK plenary

ke1 = 0.748487 +/- 0.348663 (limited) ke2 = 0.49387 +/- 0.385764 (limited) ke3 = 0.119505 +/- 0.221266 (limited) ke4 = 0.187899 +/- 0.178368 (limited) mu\_EWK =1 +/- 0.180418 (limited) mu\_QCD = 1.07007 +/- 0.149665 (limited) mu\_Wg = 1.0381 +/- 0.116488 (limited) Observed pValue: 1.48207e-10 Median test stat val: 44.9834 Median significance: 6.70696 Median pValue: 9.93583e-12

Expected significance=6.7*o* 

Large pull JET\_EffectiveNP\_Modelling1 - 0.524852 +\- 0.935979 (mostly from EXOT WS) ttgam\_mur2\_muf1\_Wg - 0.549696 +\- 0.896381 (from SM WS) ttgam\_mur2\_muf1\_ZgQCD\_1 - -0.593573 +\- 0.95735 (from SM WS)

Over constrained renofact\_Wg\_strong\_bin1 - 0.208557 +\- 0.553312 (from EXOT WS) renofact\_Zg\_strong\_bin1 - -0.222028 +\- 0.620581 (from EXOT WS)



## **Current issues**

- 1) Decide on the scale systematics model: no systematics/decorrelated between regions systematics/correlated among the regions systematics
- 2) TReXFitter somehow gives a bit different results in case it was used for all steps or its Workspace was fitted independently
  - We've temporarily solved the problems with NPs (pulls/underconstraints) by smoothing them.
  - However mu\_EWK is not 1, if SM workspace is used outside.

## Feedback

- To check different schemes of JER NPs correlations
- To check impact of custom calculation of jet flavor uncertainty in EXOT

## **Current issues (SM)**



Mismodelling? Of Zy QCD only or both Zy QCD and Wy QCD?  $Z(vv)\gamma EWK$ 

W(ev), top, tt

γ+jet

Z(II)γ

/// Uncertainty--- Pre-Fit Bkgd.

+ Data

tty

Zj, jj

Wγ EWK

2000

1500

2500

3000

m<sub>ii</sub> [GeV]

## **Current issues (SM)**

Andy Pilkington: By topologically similar, I mean that the jet pt cuts are the same and that the pt of the Wy system is forced to be similar to the pt of the Zy system (i.e. you have a cut on photon pt and MET>XGeV, which can be mimicked in the Wy CR by requiring pt(lep+MET)>XGeV). If it is topologically similar then you expect the same mismodelling in both regions.



SM EWK plenary

03 March 2021

## **Back-up slides**



- The analysis will be the first search for the VBF+photon+H-> Invisible, which deserve its own paper
- Full Run-2 dataset
- The VBF+MET dominant backgrounds (QCD V+jets) are greatly suppressed requiring one ISR photon
- Production mode has been proposed for some time
  - Nucl. Phys. B781 p64–84 (2007), JHEP 1607 (2016) 003
- Production mode already utilized in an ATLAS analysis
  - Utilized H→bb: Phys. Rev. D 98, 052003 (2018)

3

# Signal and Backgrounds

# Signal and Backgrounds



# **Background Treatment**

prefit.

| Samples                | SR       | $Z(\rightarrow \ell \ell) + \gamma VR$ | $W(\rightarrow \mu \nu) + \gamma CR$ | $W(\rightarrow e\nu) + \gamma CR$ | Fake-e CR |
|------------------------|----------|----------------------------------------|--------------------------------------|-----------------------------------|-----------|
| VBFyH125               | 86.853   | 0.000                                  | 0.000                                | 0.028                             | 0.000     |
| ggFH125                | 7.296    | 0.000                                  | 0.000                                | 0.000                             | 0.000     |
| Zy QCD                 | 82.845   | 15.975                                 | 1.964                                | 0.000                             | 6.071     |
| $Z\gamma$ EWK          | 66.492   | 14.660                                 | 0.195                                | 0.236                             | 0.455     |
| Wy QCD                 | 47.566   | 0.000                                  | 97.960                               | 35.968                            | 34.948    |
| $W\gamma$ EWK          | 12.288   | 0.000                                  | 45.380                               | 24.195                            | 13.831    |
| Top/VV/VVV/VBFW        | /W 6.459 | 0.076                                  | 10.765                               | 6.724                             | 2.617     |
| γ+j                    | 0.980    | 0.000                                  | 0.000                                | 0.000                             | 0.000     |
| $e \rightarrow \gamma$ | 17.132   | 0.000                                  | 2.564                                | 2.397                             | 0.000     |
| $j \rightarrow \gamma$ | 3.916    | 0.110                                  | 2.341                                | 1.593                             | 1.310     |
| eleFakes               | 0.000    | 0.000                                  | 0.000                                | 3.000                             | 21.300    |
| data                   | 251      | 34                                     | 170                                  | 86                                | 84        |
| total bkg              | 237.678  | 30.821                                 | 161.170                              | 74.113                            | 80.533    |
| data/bkg               | 1.056    | 1.103                                  | 1.055                                | 1.160                             | 1.043     |

- · Gamma+jet enters the signal region through reconstruction of fake MET
  - · Use a jet smearing approach with normalization to a low MET validation region
- · Electron faking photons
  - Measured the fake rate of electrons being reconstructed as photons in the Z mass peak. Then apply this eta and pT dependent correction to Medium LH electrons
- Jets faking photons: measured using an ABCD method in isolation and PID. Checked dependence in photon pT, mjj and MET. Large uncertainties but it is a very small background
- · Top/VV/VVV: normalized to their cross-section. No special theoretical treatment is made
- · Lepton veto uncertainty for Wg in the 0-lepton selection

| 1                                                 | epton inefficiency                                  |    |  |
|---------------------------------------------------|-----------------------------------------------------|----|--|
| eleANTISFEL_EFF_ID_TOTAL_INPCOR_PLUS_UN<br>γ      | COR ID inefficiency uncertainty<br>+ jet Background |    |  |
| GJetCore                                          | Core+tail+truth $E_T^{miss}$ variations             |    |  |
| GJetTrig MET Trigger variations and normalisation |                                                     |    |  |
| e-                                                | fake-γ Background                                   |    |  |
| EFakePhWindow                                     | Vary mass window                                    |    |  |
| EFakePhStat                                       | Fake rate stat unc.                                 | 24 |  |
| EFakePhBkgSub                                     | Bkg subtraction unc.                                | Х  |  |
| PP-L-DLP-                                         | Engrave differences between a and a                 |    |  |



Figure 76: The fraction of triboson versus VBS Zgjj in the LO EWK MG samples at truth level using the same selections as Section 7.1.2.

- · Electroweak Triboson is included in the madgraph samples
- We have not separated triboson and EWK Zg at this point, so it would be part of the EWK Zg signal
- Does the SM group separate the triboson processes out from the signal sample? Perhaps we should?
  - No major impact is expected given that the contamination for Mjj>500 GeV is less than 2% at LO. Most of the signal has mjj>500 GeV

# **Reversing Photon Centrality**

- · Reversing the photon centrality cut to control the Zg strong background
  - Used to normalize the Zg strong background
  - 50% purity of Zg strong







# **PreFit vs PostFit [Note this H->inv signal]**



These are the fit regions except the Z(11) one.

SR bins are in mjj: 250,500,1000,1500 GeV

Figure 109: The unblinded signal regions and unblinded validation regions are shown for each of the 4 bins in a signal floated fit. The post-fit errors are statistical plus reconstruction plus theory systematics, and the normalisations

EWK Zg fit

Control regions for are post fit.

Plot above is the post-fit SR with dphiji<2 fitting for the</p> Higgs to invisible signature. This is just an example as we'd will prepare a plot for the EWK Zg fit

# $\int \Delta \phi_{jj} \text{ Selection & Keras NN}$

- Nominally we cut Δφ<sub>ij</sub><2 for H->invisible
  - If we extend to Δφ<sub>ij</sub><2.5, we reduce the interference uncertainties</li>
  - Expected significance goes from 4.1->4.6σ for EWK Zγ
  - Would suggest we make this change for the Higgs->invisible analysis.
- · keras NN:
  - Expected limit improves slightly from 0.36->0.35 for H->invisible & it reduces the interference uncertainty that we missed during approval
  - Expected significance for EWK Zγ is closer to 3.3σ because it is tuning for lower Δφ<sub>ij</sub>.
  - · Prefer the mjj fit





# **Systematics Treatment**

- · MET Trigger uncertainty is applied to account for the MET trigger turn on curve
- · Full JER is used. typically small so maybe this is ok for combination?
  - This analysis uses p-flow jets
- · Theory uncertainties:
  - Zg strong: scale variations (these are dropped in the SM analysis), PDF (one set), comparison to MG
  - Wg strong: scale variations (these are dropped in the SM analysis), PDF (one set), (comparison to MG to be added using the Zg strong comparison)
  - Zg EWK: scale variations from VBFNLO, PDF(one set), comparison to H7 parton shower model, electroweak/strong interference
  - To match the SM analysis, these uncertainties are fully correlated across all SR analysis bins. Both the shape and normalization are considered as uncertainties.
  - One difference is that we correlated the Wg strong uncertainties also in the one-lepton CRs, whereas the SM analysis has these uncorrelated. We correlated them with the SR and CR to cancel the normalization component of these uncertainties

| $E_{\rm T}^{\rm miss}$ -Trigger and $E_{\rm T}^{\rm miss}$ -Terms |                                                                      |  |
|-------------------------------------------------------------------|----------------------------------------------------------------------|--|
| xeSFTrigWeight                                                    | trigger efficiency uncertainty                                       |  |
| MET_SoftTrk_ResoPerp                                              | track-based soft term related to transversal resolution uncertainty  |  |
| MET_SoftTrk_ResoPara                                              | track-based soft term related to longitudinal resolution uncertainty |  |
| MET_SoftTrk_ScaleUp                                               | track-based soft term related to longitudinal scale uncertainty      |  |
| MET_SoftTrk_ScaleDown                                             | track-based soft term related to longitudinal scale uncertainty      |  |

# **Theory uncertainties (EXOT analysis)**

- Theory systematic uncertainties in the SR
- Zg EWK theory uncertainties were normalized to the fiducial volume
  - Only acceptance+shape uncertainties should be included for the signal



### SM EWK plenary

# **Theory uncertainties (EXOT analysis)**

# **PostFit Yields**

Table 84: Yields of data and background predictions, after the fit to Data, in 139 fb<sup>-1</sup> for the four bins of the SR based on the  $m_{ij}$ . The uncertainties on the backgrounds are derived by the fit including the effects of nuisance parameter constraints and the correlation of systematic uncertainties. A dash "-" indicates less than 0.01 events. The uncertainties on the "Data/Bkg" treat the Data and Bkg components as uncorrelated.

| FIDCESS                        |                 |                   | WY CR           | 7 <sup>Y</sup> CP        | SR - $m_{jj}$ [TeV] |                 |                   |                 |
|--------------------------------|-----------------|-------------------|-----------------|--------------------------|---------------------|-----------------|-------------------|-----------------|
| 1100000                        | Take c CR       | Wev CK            | $W_{\mu\nu}$ CK | <sup>2</sup> Rev.Cen. CK | 0.25-0.5            | 0.5-1.0         | 1.0-1.5           | ≥ 1.5           |
| Strong $Z\gamma$ + jets        | 8± 8            | 0±1               | 3±2             | $50 \pm 12$              | 20± 6               | 54±12           | 13±5              | 5±2             |
| EWK $Z\gamma$ + jets           | $0.6 \pm 0.2$   | $0.3 \pm 0.2$     | $0.4 \pm 0.2$   | 7±2                      | 4±1                 | $30 \pm 7$      | $25 \pm 5$        | 36±7            |
| Strong $W\gamma$ + jets        | $43 \pm 9$      | 47± 9             | $133 \pm 21$    | $24\pm 6$                | 22±6                | $35 \pm 10$     | 9± 3              | $3 \pm 1$       |
| EWK $W\gamma$ + jets           | $19 \pm 6$      | $31 \pm 7$        | $59 \pm 13$     | $1.4 \pm 0.5$            | 2±1                 | 6±1             | $4\pm 1$          | $5\pm 1$        |
| $jet \rightarrow \gamma$       | $1 \pm 1$       | $2\pm 2$          | $3\pm 2$        | $2\pm 2$                 | 1±1                 | $2\pm 2$        | $1\pm 1$          | $0.4 \pm 0.3$   |
| $jet \rightarrow e$            | $34 \pm 17$     | 5±3               | -               | -                        | -                   | -               | -                 | -               |
| $e \rightarrow \gamma$         | -               | $2.7 \pm 0.4$     | $2.9 \pm 0.4$   | $13 \pm 1$               | 6±1                 | $11 \pm 1$      | $2.6 \pm 0.4$     | $1.4 \pm 0.3$   |
| $\gamma$ + jet                 | -               | -                 | -               | $0.7 \pm 0.5$            | $0.7 \pm 0.5$       | $0.4 \pm 0.3$   | $0.1 \pm 0.1$     | $0.1 \pm 0.1$   |
| $t\bar{t}\gamma/V\gamma\gamma$ | $3\pm 1$        | 9±2               | $13 \pm 2$      | $3\pm 1$                 | 2±1                 | 4± 1            | $0.4 \pm 0.2$     | $0.1 \pm 0.1$   |
| Total Bkg                      | $108 \pm 10$    | 96± 8             | $213 \pm 14$    | $102 \pm 9$              | 58±6                | $143 \pm 12$    | 54± 5             | 52±6            |
| Data                           | 108             | 95                | 216             | 100                      | 52                  | 153             | 50                | 52              |
| Data/Bkg                       | $1.00 \pm 0.14$ | $0.99 {\pm}~0.12$ | $1.01 \pm 0.09$ | $0.98 \pm 0.13$          | $0.90 \pm 0.15$     | $1.07 \pm 0.11$ | $0.93 {\pm}~0.16$ | $0.99 \pm 0.18$ |

## SM EWK plenary

# Plans (EXOT analysis)

- Publication plans for the exotics results:
  - Exotics results should go out for a CONF note for Moriond EWK: dark photon search + H->invisible
  - SM EWK Zγ (exotics) result will be included in an EPJC paper along with the exotics results shortly after Moriond
    - After this approval, the SM results should be added to the CONF note within 1-2 weeks in order to start the paper approval process
    - · Plan to include the SM EWK Zg team in the author list given the extensive discussions
- In the SM paper, planned combination with the SM analysis and the combination is on-going with ~6.50 expected

21

Initial discussion tomorrow <u>https://indico.cern.ch/event/1010000/</u>





SM EWK plenary

# jet $\rightarrow \gamma$ misID background I: correlation factor

Source: Z(vv)+jets and multi-jet processes.

Background is estimated from data using **2D-sideband method**:

Photon isolation and identification variables are used to construct the sidebands.



Isolation should not

A: tight,  $E_T^{cone40}$  - 0.022  $p_T^{\gamma} < 2.45$  [GeV] B: tight, 2.45 + gap <  $E_T^{cone40}$  - 0.022  $p_T^{\gamma} < 29.45$  [GeV] C: non-tight,  $E_T^{cone40}$  - 0.022  $p_T^{\gamma} < 2.45$  [GeV] D: non-tight, 2.45 + gap <  $E_T^{cone40}$  - 0.022  $p_T^{\gamma} < 29.45$  [GeV]

**Non-tight:** at least one of the cuts on the following variables should fail in these:

- loose'2: ws3, Fside
- loose'3:  $w_{s3}$ ,  $F_{side}$ ,  $\Delta E$
- loose'4:  $w_{s3}$ ,  $F_{side}$ ,  $\Delta E$ ,  $E_{ratio}$
- loose'5:  $w_{s3}$ ,  $F_{side}$ ,  $\Delta E$ ,  $E_{ratio}$ ,  $w_{tot}$









Region D  $0.37 \pm 0.10$   $0.37 \pm 0.10$   $0.29 \pm 0.05$   $0.30 \pm 0.05$ 

40

# jet $\rightarrow\gamma$ misID background II: estimation technique



|   | Data         | $Z(\nu\nu)\gamma$ QCD | $W\gamma$ QCD   | $W\gamma$ EWK   | W(ev), top, tt | ttγ           | $\gamma$ +jet | $Z(ll)\gamma$   | $W(\tau \nu)$ |
|---|--------------|-----------------------|-----------------|-----------------|----------------|---------------|---------------|-----------------|---------------|
| A | blinded      | $569.5 \pm 1.7$       | $396 \pm 6$     | $41.6\pm0.4$    | $97 \pm 3$     | $87 \pm 2$    | $112 \pm 10$  | $11.0\pm0.8$    | $7 \pm 3$     |
| В | $101 \pm 10$ | $29.4\pm0.4$          | $16.1 \pm 1.9$  | $1.51\pm0.08$   | $3.7 \pm 0.2$  | $4.5 \pm 0.4$ | $2.1 \pm 1.1$ | $0.5 \pm 0.2$   | $5.2 \pm 1.2$ |
| C | $38 \pm 6$   | $5.08 \pm 0.16$       | $3.9 \pm 0.6$   | $0.42 \pm 0.04$ | $1.30\pm0.14$  | $1.1 \pm 0.3$ | $0.8\pm0.7$   | $0.11 \pm 0.05$ | $5.1 \pm 1.9$ |
| D | $27 \pm 5$   | $0.22 \pm 0.03$       | $0.14 \pm 0.08$ | $0.015\pm0.007$ | $0.4 \pm 0.4$  | $0.14\pm0.08$ | $0.3\pm0.3$   | $0 \pm 0$       | $6.0 \pm 1.4$ |

# jet $\rightarrow \gamma$ misID background III: uncertainties

### Statistical uncertainty:

- The event yields of four regions in data and non jet  $\Rightarrow \gamma$  background are varied by ±1 $\sigma$  independently.
- The statistical uncertainty on the signal leakage parameters is **3%**.

#### Total statistics: 60%.

| Central value          | $35^{+19}_{-21}$ |
|------------------------|------------------|
| Loose'3                | -6               |
| Loose'4                | -2               |
| Loose'5                | -5               |
| Isolation gap +0.9 GeV | +8               |
| Isolation gap -0.6 GeV | $\pm 0$          |



#### Systematic uncertainty:

- Anti-tight definition and isolation gap choice variations of ABCD region determination for ±1 $\sigma$  changes in data yield (23%).
- Uncertainty coming from the signal leakage parameters is obtained via using two different parton shower models (**0**%).

| Signal leakage parameters           | MadGraph+Pythia8      | MadGraph+Herwig7      |
|-------------------------------------|-----------------------|-----------------------|
| CB                                  | $0.0313 \pm 0.0006$   | $0.0315 \pm 0.0006$   |
| c <sub>C</sub>                      | $0.0085 \pm 0.0003$   | $0.0089 \pm 0.0003$   |
| c <sub>D</sub>                      | $0.00031 \pm 0.00005$ | $0.00043 \pm 0.00006$ |
| $jet \rightarrow \gamma$ estimation | $35^{+19}_{-21}$      | $35^{+19}_{-21}$      |

• The iso/ID uncertainty on reconstruction photon efficiency  $\delta_{eff}^{iso/ID}$  (9%):

• 
$$\sigma_{iso}^{c_{B}}(relative) = \delta_{iso}^{eff} * (c_{B} + 1)/c_{B}$$
  
•  $\sigma_{ID}^{c_{C}}(relative) = \delta_{ID}^{eff} * (c_{C} + 1)/c_{C}$   
•  $\sigma_{iso}^{c_{D}}(relative) = \delta_{iso}^{eff} * (c_{B} + 1)/c_{B}$   
•  $\sigma_{ID}^{c_{D}}(relative) = \delta_{ID}^{eff} * (c_{C} + 1)/c_{C}$   
 $\delta_{iso}^{eff} = 0.023$   
 $\delta_{iso}^{eff} = 0.019$ 

#### Total systematics: 25%.

**Resulting number** of jet  $\rightarrow \gamma$  events in Zy inclusive region is  $35^{+19}_{-21} \pm 9$ . Z(vv)+jets and multi-jet MC predict 7±2 events.<sup>42</sup>



# jet $\rightarrow \gamma$ misID background IV: $Z\gamma$ inclusive and signal regions

The extrapolation of jet+ $\gamma$  background estimation from Z $\gamma$  inclusive region to the signal region:



The current uncertainty for this estimation covers all differences and should not be increased.







Good agreement of the shapes.

## $\hat{U}$

The shape of jet  $\Rightarrow \gamma$  background for normalization is taken from  $Z\gamma$  QCD.

43

# Electron misidentification as photon ( $e \rightarrow \gamma$ )

## Background estimation method:

1. estimating  $e \rightarrow \gamma$  fake-rate as  $rate_{e \rightarrow \gamma} = rac{(N_{e\gamma} - N_{bkg})}{(N_{ee} - N_{bkg})}$  ,

where  $N_{e\gamma}$ ,  $N_{ee}$  – number of ee and e $\gamma$  events in Z-peak mass window (M<sub>7</sub>–10 GeV, M<sub>7</sub>+10 GeV),

N<sup>bkg</sup> – background in Z-peak mass window extrapolated from sideband with exponential pol1 or pol2 fit (more details below) Wγ background rejection:  $E_T^{miss} < 40 \text{ GeV}$ eγ pair selection:

signal region photon with  $p_T > 150 \text{ GeV}$  (probe), selected Tight electron with  $p_T > 25 \text{ GeV}$  (tag)

### ee pair selection:

selected electron with  $p_T > 150 \text{ GeV}$  (probe), selected opposite sign Tight electron with  $p_T > 25 \text{ GeV}$  (tag)

- 2. building e-probe/incl. e-probe control region (CR): signal region/Z $\gamma$  incl. region with selected Tight electron with  $p_{\tau}$ >150 GeV instead of photon
- 3. scaling data distributions from e-probe CR/incl. e-probe CR on fake rate



# $e{\rightarrow}\gamma$ fake rate dependencies on eta and pT







Background fit is extrapolated to Z peak mass window from both sides. Integrals under the fit function is this region give  $N_{min}$  and  $N_{max}$ Average used as  $N_{ee}^{bkg}$  in fake-rate calculation:  $N_{average}^{bkg} = \frac{N_{min}^{bkg} + N_{min}^{bkg}}{2}$  Background fit is extrapolated to Z peak mass window after the fit. Integral of extrapolated function in Z peak mass window is used as N<sub>ev</sub><sup>bkg</sup>

Systematics on bkg estimation under the Z peak is evaluated by variation of N<sup>bkg</sup> values in ee and ey pairs.

 $N_{min}$  and  $N_{max}$  values are used as variations of  $N_{ee}^{bkg}$ . In ev pairs extrapolation function parameters were varied by their statistical uncertainties one by one. Resulting integral of the function is used for variation of  $N_{ev}^{bkg}$ . Sum in quadrature of the largest variations of  $N_{ev}^{bkg}$  and  $N_{ee}^{bkg}$  is taken as systematics.

# $e \rightarrow \gamma$ : systematics and result

Systematics on fake-rate estimation (ascending contribution):

- Z peak mass window size variation by σ
- Background under Z peak evaluation
- Difference between "real fake rate" in Z(ee) MC and tag-and-probe method performed on Z(ee) MC

| fake rate                         |                                | $150 < E_T^{\gamma} < 250 \text{ GeV}$<br>$0 <  \eta  < 1.37$ |                           | $1.52 <  \eta  < 2.37$   |      |      |
|-----------------------------------|--------------------------------|---------------------------------------------------------------|---------------------------|--------------------------|------|------|
| syst. from mass windo             | from mass window var.:         |                                                               | m mass window var.: 0.4%  |                          | 0.3% | 0.6% |
| syst. from tag-n-probe            | rom tag-n-probe and real f.r.: |                                                               | 13.4%                     | 8.7%                     |      |      |
| Background fit variation          |                                | 3.7%                                                          | 10.8%                     | 3.3%                     |      |      |
| Total syst.:                      |                                | 4.8%                                                          |                           | 9.3%                     |      |      |
| $e \rightarrow \gamma$ fake rates |                                |                                                               |                           |                          |      |      |
|                                   | $150 < E_T$                    | < 250 Gev                                                     | $E_T > 250 \text{ GeV}$   |                          |      |      |
| $0 <  \eta  < 1.37$               | $0.0205 \pm 0.0$               | $0005 \pm 0.0010$                                             | $0.0183 \pm 0.0012 \pm 0$ | <sup>0.0032</sup> stat., |      |      |
| $1.52 <  \eta  < 2.37$            |                                | $0.0571 \pm 0.001$                                            | $16 \pm 0.0053$           | ,                        |      |      |

First uncertainty is stat., second is syst.

## Total background (e-probe region scaled by fake-rate):

 $Z\gamma$  inclusive region 97 ± 2 ± 4

Signal region  $19.5 \pm 0.8 \pm 0.7$ 

*Total systematics* does not exceed 4.12%



Percent of e-probe CR contamination is taken as additional systematic uncertainty: 1-2% Contamination is determined as

 $- {all \ other \ MC} \over {W(e
u) + t \, ar t + t \ MC}$ 

Total systematics in every region of fake-rate estimation combines fake-rate statistical unc., fake-rate systematics unc., systematics from contamination

# Total event yields (pre-fit)

|                           |         | WγC     | R         | $Z\gamma$ inclusive       | $Z\gamma$ QCD CR 1        | $Z\gamma$ QCD CR 2       | Signal region              |
|---------------------------|---------|---------|-----------|---------------------------|---------------------------|--------------------------|----------------------------|
| $Z(\nu\nu)\gamma$ EWK     | 0.108 = | E 0.008 | ± 0.042   | $63.73 \pm 0.2 \pm 24.77$ | $13.71 \pm 0.09 \pm 5.96$ | $4.72 \pm 0.05 \pm 2.23$ | $46.16 \pm 0.17 \pm 17.92$ |
| $Z(\nu\nu)\gamma$ QCD     | 0.98 =  | E 0.07  | ± 0.58    | $569.4 \pm 1.7 \pm 267.7$ | $353.4 \pm 1.4 \pm 164.6$ | $101.5 \pm 0.7 \pm 47.8$ | $114.5 \pm 0.8 \pm 55.8$   |
| Wy QCD                    | 390 =   | E 6     | ± 183     | $396 \pm 6 \pm 187$       | $237 \pm 5 \pm 109$       | $68 \pm 2 \pm 34$        | $91 \pm 3 \pm 45$          |
| $W\gamma$ EWK             | 61.3 =  | E 0.5   | ± 21.3    | $41.2 \pm 0.4 \pm 15.3$   | $13.7 \pm 0.2 \pm 5.2$    | $4.34 \pm 0.13 \pm 1.71$ | $23.5 \pm 0.3 \pm 8.8$     |
| $W(ev)$ , top, $t\bar{t}$ | 19.1    | E 0.8   | ± 1.3     | $97.0 \pm 1.8 \pm 6.8$    | $61.8 \pm 1.5 \pm 4.3$    | $15.6 \pm 0.8 \pm 1.1$   | $19.7 \pm 0.8 \pm 1.4$     |
| ttγ                       | 168 =   | E 3     | ± 63      | $86.8 \pm 2.0 \pm 35.7$   | $57.8 \pm 1.6 \pm 29.5$   | $8.7 \pm 0.6 \pm 8.3$    | $20.3 \pm 1.0 \pm 9.2$     |
| $\gamma$ +jet             | 6.0 =   | £ 5.3   | ± 1.9     | $90 \pm 20 \pm 30$        | $63 \pm 21 \pm 19$        | $9 \pm 7 \pm 3$          | $23 \pm 11 \pm 7$          |
| Zj, jj                    | 0.071 = | E 0.703 | ± 0.014   | $35 \pm 19 \pm 9$         | $25 \pm 14 \pm 5$         | $7.3 \pm 7.2 \pm 1.4$    | $8.2 \pm 8.1 \pm 1.6$      |
| $Z(\ell\ell)\gamma$       | 8.9 =   | E 0.6   | ± 4.3     | $11.0 \pm 0.8 \pm 4.4$    | $6.8 \pm 0.6 \pm 3.0$     | $2.0 \pm 0.3 \pm 0.9$    | $2.1 \pm 0.4 \pm 1.4$      |
| Total                     | 654 =   | E 8     | $\pm 202$ | $1400 \pm 30 \pm 500$     | $830 \pm 30 \pm 290$      | $222 \pm 10 \pm 88$      | $348 \pm 14 \pm 118$       |
| Data                      | 720 =   | E 30    |           |                           | $830 \pm 30$              | 257 ± 16                 |                            |

Table 16: Event yields for the signal and all of the background processes considered in this analysis before the normalization of the  $Z\gamma$ ,  $W\gamma$  and  $tt\gamma$  background in the background only fit described in Section 12. The yields are presented in the regions described in Section 6.7. The uncertainty of the expected consists of statistic and systematic uncertainties. For the moment data in the signal region (and thus the  $Z\gamma$  inclusive region) is blinded.

# Systematic uncertainties pruning. Experimental 1/2



- The normalization part is dropped if the total effect on the event yield is < 1%</li>
- The shape part is dropped if there's no bins with effect on the event yield is > 1%

# Systematic uncertainties pruning. Experimental 2/2



- The normalization part is dropped if the total effect on the event yield is < 1%</li>
- The shape part is dropped if there's no bins with effect on the event yield is > 1%

# Systematic uncertainties pruning. Theoretical



- The normalization part is dropped if the total effect on the event yield is < 1%</li>
- The shape part is dropped if there's no bins with effect on the event yield is > 1%

# Wg QCD modelling uncertainty

- Since there are no alternative samples for WγQCD, the modelling uncertainty was created by taking relative uncertainties of Z(vv)γ QCD Sherpa/Madgraph comparison in every region.
- Zγ inclusive region is used to model the uncertainty in the Wγregion, since Z(vv)γ QCD has low statistics and fluctuations as high as 1000% in Wγregion



SM EWK plenary

52

#### Electroweak $V\gamma$ + jets theory uncertainties

- NLO QCD corrections are about 2-3%, with 3-10% scale variations
- No strong dependence on  $m_{\rm T}(\gamma, E_{\rm T}^{\rm miss})$



### SM EWK plenary

#### Electroweak $V\gamma$ + jets theory uncertainties

- Applied NLO QCD corrections to  $m_{ij}$ , leading jet  $p_{\rm T}$ , and subleading jet  $p_{\rm T}$
- Only the reweighting in  $m_{ii}$  affects the shape of the DNN score distribution



September 11, 2020

Lacey Rainbolt, VBF + MET +  $\gamma$ 

12 / 19



- Smoothed using parabolic smoothing with 1 peak. Done separately for the mjj, mT and DNN inputs
- \* Smoothed 12 systematics uncertainties, which were problematic in the fit
  - Set a minimal list because smoothing can remove real information of the systematic uncertainties

## SM EWK plenary

# **Jets faking Photons**



Model assumptions:

- Correlation of Tightness ID and Isolation negligible for the fake photons background
- Negligible number of photon candidates in the three CR



Isolated = TopoEtCone40 - 0.022 pt - 2.45 GeV < 0 and ptcone20/pyt <

Both hypotheses relaxed to account for possible correlation and leakage from SR (respectively  $R_{MC}$  and  $c_{1,2,3}$ , extracted from MC)

SR photon Purity 
$$\longrightarrow$$
 
$$P = \frac{(M^B + N^A c_3 - N^B c_2 R_{MC} - M^A c_1 R_{MC})}{2N^A (c_1 c_2 R_{MC} - c_3)} \cdot \left(-1 + \sqrt{1 + \frac{4(c_1 c_2 R_{MC} - c_3)(N^A M^B - N^B M^A R_{MC})}{(M^B + N^A c_3 - N^B c_2 R_{MC} - M^A c_1 R_{MC})^2}}\right)$$



#### Electrons faking Photons – 2/2

Three major uncertainty sources:

11

- Mass Range: estimated as max absolute difference between <sup>5</sup>/<sub>2</sub> 0
   nominal and integrating between ±2σ / ±4σ (~1 − 4%)
- Background subtraction: estimated as max absolute difference between nominal and integrating w/o subtracting background (~3 - 8%)
- Bias in photon reco energy: the photon energy is varied up and down by 1.5% (estimated from the difference between the ee and ey m<sub>ex</sub> peak positions) (~8 - 10%)



Table 26: Number of electrons faking photons estimated in the SR and its CRs for full Run-2 data. The uncertainty is expressed in three terms: the first term is the statistical uncertainty related to the number of events found in the prober < CR, the second and thrid terms are the statistical and systematic uncertainties related to the electron fake rate, respectively. The total uncertainty, calculated as the combination of the three uncertainties listed above, is also shown.



## SM EWK plenary

### 13 November 2020

# Updating the Central Value for Vg Strong

- The NLO EWK+QCD corrections are available as on-the-fly weights in the Vg ntuples.
- Frank says that it is the most precise estimate of Vg strong that is currently available, so we should be using it.
- Practically it makes no change. If we are updating the dphijj cut, then we might as well do the too.

|                            | Bin 1 | Bin 2 | Bin 3 | Bin 4 |
|----------------------------|-------|-------|-------|-------|
| SR Total                   | -1.5% | -4.1% | -3.0% | -4.2% |
| SR W                       | -1.4% | -4.8% | -3.1% | -3.1% |
| $W \rightarrow e \nu V R$  | -1.4% | -7.7% | -2.8% | -2.7% |
| $W \rightarrow \mu \nu VR$ | -1.5% | -2.1% | -2.5% | -7.4% |
| $Z \rightarrow ee VR$      | -1.3% | -3.3% | -3.6% | -2.7% |
| $Z \rightarrow \mu \mu VR$ | -1.3% | -1.9% | -0.8% | -4.6% |

Changes relative to the NLO QCD normalization

## Sherpa vs MG Vg strong



Figure 60: The  $Z(\rightarrow \ell\ell)\gamma+jets$  strong distributions of photon  $p_{1}$ ,  $m_{jp}$ , Keras score, and  $m_{1}(\gamma, E_{1}^{min})$  with 139 fb<sup>-1</sup> of simulation in the Losse  $Z\gamma+jets$  validation region, defined in Section 4.5.7. The predictions from Sherpa 2.2.8, 2.2.2, and Madgraph are compared at reconstruction level. The simulation is normalised to cross-sections times luminosity, and the uncertainties are statistical work.

### SM EWK plenary

### 13 November 2020

# Zyjj/Wyjj QCD scale uncertainties

|          | Scale | Scale:<br>4 NPs per sample for: | <b>Zyjj QCD</b> and <b>Wy QCD scale</b> uncertainties are omitted since they only affect the normalization and tend to |
|----------|-------|---------------------------------|------------------------------------------------------------------------------------------------------------------------|
| Zγjj EWK | V     | <ul> <li>ZyQCD CR1</li> </ul>   | double the designated normalization coefficients in the                                                                |
| Zγjj QCD |       | <ul> <li>ZyQCD CR2</li> </ul>   | likelihood model.                                                                                                      |
| Wy EWK   | ۷     | • SR                            |                                                                                                                        |
| Wy QCD   |       |                                 | However the EXOT analysis does have those                                                                              |
| ttγ      | ۷     |                                 | uncertainties.                                                                                                         |
| Z(II)+γ  | ۷     |                                 |                                                                                                                        |

When we try to include **Zyjj QCD** and **Wy QCD scale** uncertainties with the same 4 NPs scheme we got unnatural NP pulls,  $\mu(Z\gamma QCD)$  shift and  $\mu(Z\gamma QCD)$  error increase.

Trying to combat those issues we've also tested the 1 NP scheme for **all** of the scale uncertainties (i.e. all of the regions are now "correlated").

# Zyjj/Wyjj QCD scale uncertainties

## No Zy/Wy scale unc. Asimov data fit

| μ(ΖγΕWK) | 1.04 <sup>+0.27</sup> <sub>-0.25</sub> (stat) <sup>+0.24</sup> <sub>-0.17</sub> (syst) |
|----------|----------------------------------------------------------------------------------------|
| μ(ZγQCD) | 1.08 ± 0.08 (stat) <sup>+0.16</sup> (syst)                                             |
| μ(Wγ)    | 1.09 ± 0.04 (stat) <sup>+0.20</sup> <sub>-0.14</sub> (syst)                            |

Expected median significance: **3.8**  $\sigma$ 

With Zy/Wy scale unc., 4 NP Asimov data fit

| μ(ΖγEWK) | 1.04 <sup>+0.28</sup> (stat) <sup>+0.26</sup> (syst)        |
|----------|-------------------------------------------------------------|
| μ(ZγQCD) | 1.30 ± 0.08 (stat) <sup>+0.49</sup> 0.33 (syst)             |
| μ(Wγ)    | 1.09 ± 0.04 (stat) <sup>+0.19</sup> <sub>-0.13</sub> (syst) |

Expected median significance: **3.6**  $\sigma$ 



 $\begin{array}{l} Z\gamma \; \text{QCD} \; \text{NNPDF unc.} + \alpha \\ Z\gamma \; \text{QCD scale,} \; Z\gamma \; \text{QCD cR}^2 \\ Z\gamma \; \text{QCD scale,} \; \text{SR} \\ Z\gamma \; \text{QCD scale,} \; \text{SR} \\ Z\gamma \; \text{EWK} \; \text{NNPDF unc.} + \alpha \\ \gamma \; \text{QCD} \; \text{scale,} \; \text{SR} \\ \gamma \; \text{QCD scale,} \; Z\gamma \; \text{QCD cR}^2 \\ W\gamma \; \text{QCD scale,} \; Z\gamma \; \text{QCD cR}^2 \\ W\gamma \; \text{QCD scale,} \; W\gamma \; \text{CR} \\ W\gamma \; \text{QCD scale,} \; \text{SR} \\ \end{array}$