Классификация лептонных распадов W бозона методами мащинного обучения в p-p столкновениях при $\sqrt{S} = 13$ ТэВ в эксперименте ATLAS.

Научный руководитель: Пономаренко Д.Е. Выполнил: Толкачев Г.А.

Мотивация

- В анализе данных с LEP имеется указание на возможное отклонение в отношении отношений сечения двух процессов лепленного распада W бозона $Br(W \to \tau \nu)/Br(W \to \mu \nu)$
- На эксперименте ATLAS рождается большое количество W. Можно гарантировать хорошую статистику для распадов $W \to \tau \nu \to \mu \nu \nu$. Имеется больше содержание фонового процесса $W \to \mu \nu$, который имеет схожую сигнатуру.
- Цель улучшить результат измерения отношения отношений сечений с помощью переменной отклика классификатора BDT.

W Leptonic Branching Ratios

Подбор оптимальных параметров классификатора BDT.

Обучение и валидация классификатора BDT. Классификация данных.

Фитирование. Оптимизация биннинга для BDT. Зависимость значения ROC-integ от параметров классификатора BDT

TMVA BDT score

Использованные данные

Экспериментальные данные

В работе использовались экспериментальные данные, набранные на детектора ATLAS в 2017 и 2018 году во время режима с низкой светимостью 340 пБ⁻¹. При столкновении протонпротонных пучков с энергией 13 ТэВ.

Монте-Карло моделирование

Смоделированные данные были получены методом Монте-Карло с помощью генераторов Pythia и Sherpa и прошли всю цепочку реконструкций на условии реальных протон - протонных столкновений эксперимента ATLAS

Список Монте-Карло используемых в работе.

Sample	DSID	Generator	xs [pb]
$W^+ ightarrow \mu u$	361101	PowhegPythia8EvtGen	11500.9
$W^- \rightarrow \mu \nu$	361104	PowhegPythia8EvtGen	8579.31
$W^+ \rightarrow \tau \nu$	361102	PowhegPythia8EvtGen	11500.9
$W^- \rightarrow \tau \nu$	361105	PowhegPythia8EvtGen	8579.31
$Z \rightarrow \tau \tau$	361108	PowhegPythia8EvtGen	1950.63
$Z \rightarrow \mu \mu$	361107	PowhegPythia8EvtGen	1950.63
Top	410013	PhPy8EG_P2012	35.8455
Top	410014	PhPy8EG_P2012	35.8244
Top	410470	PhPy8EG	729.77
Top	410642	PhPy8EG	36.993
Top	410643	PhPy8EG	22.174
Top	410644	PowhegPythia8EvtGen	2.06146
Top	410645	PowhegPythia8EvtGen	1.28867
Top	410646	PowhegPythia8EvtGen	35.8486
Diboson	363356	Sherpa_221_PDF30	2.20355
Diboson	363358	Sherpa_221_PDF30	3.4328
Diboson	363359	Sherpa_221_PDF30	24.708
Diboson	363360	Sherpa_221_PDF30	24.724
Diboson	363489	Sherpa_221_PDF30	11.42
Diboson	364250	Sherpa_221_PDF30	1.2523
Diboson	364253	Sherpa_221_PDF30	4.579
Diboson	364254	Sherpa_221_PDF30	12.501
Diboson	364255	Sherpa_221_PDF30	3.2344

Функция правдоподобия

- μ_{sig} Отношение отношенйий сечени. •
- μ_l, μ_{ZR} Нормировочные коэффициенты. ullet
- N_h^{τ} Вклад от распадов $W \rightarrow \tau \nu$.
- N_h^{τ} Вклад от распадов $W \to \mu \nu$.
- *N_b^{QCD}* Вклад КХД фона.
- N_{h}^{MC} Вклад остальных процессов.

 $BR(\tau \rightarrow \mu$

$$^{ta}, \mu_W[\mu_{sig}N_b^{\tau} + N_b^l] + \mu_{ZR}N_b^{MC} + N_b^{QCD})\prod_j^{NPs} G(\theta_j^0, \theta_j)$$

Задание параметра интереса

$$\mu_{sig} = \left(\frac{BR(W \to \tau\nu)BR(\tau \to \mu\nu\nu)}{BR(W \to \tau\nu)}\right)_{data} / \left(\frac{BR(W \to \tau\nu)BR(\tau \to \mu\nu\nu)}{BR(W \to \tau\nu)}\right)_{MC}$$

$$\mu\nu\nu) = 17.39 \% \Rightarrow \mu_{sig} = \left(\frac{BR(W \to \tau\nu)}{BR(W \to \tau\nu)}\right)_{data} / \left(\frac{BR(W \to \tau\nu)}{BR(W \to \tau\nu)}\right)_{N}$$

$$\frac{BR(W \to \tau\nu)}{BR(W \to \mu\nu)}\Big)_{MC} = 1 \Rightarrow \mu_{sig} = R_{\tau/\mu} = \frac{BR(W \to \tau\nu)}{BR(W \to \mu\nu)}$$

Оптимизация биннирования переменной BDT

BDT = [0.0, 0.3, 0.5, 0.65, 0.83, 1.0].

Для получения оптимального результата необходимо провести оптимизацию биннирования распределения новой переменой отклика модели BDT.

Биннирование проводится таким образом чтобы быть наиболее чувствительным к изменению формы сигнального и фонового распределения

Результаты фитирования с использованием переменной поперечной массы M_T

Результат фитирования Азимов данных

 $\mu_{sig} = 1.0000^{+0.0121}_{-0.0121} (stat_{data})^{+0.0051}_{-0.0051} (stat_{MC})$

Результаты фитирования с использованием новой переменной отклика классификатора BDT

Результат фитирования Азимов данных

 $\mu_{sig} = 1.0000^{+0.0117}_{-0.0117} (stat_{data})^{+0.0048}_{-0.0048} (stat_{MC})$

8

Результаты фитирования

- Использование переменной отклика модели при фитировании уменьшает статистическую погрешность экспериментальных данных на 0.004 и погрешность Монте-Карло на 0.003.
- Различие между двумя результатами фитирования является несущественным.
- Планируется исследование причины столь малого уменьшения погрешностей, а также проведение повторного измерения

Заключение

- Произведен вывод параметра интереса, которым является отношение отношений сечений $R_{\tau/\mu} = Br(W \to \tau\nu)/Br(W \to \mu\nu)$
- Освоен пакет для проведения фитирования TRExFitter.
- Сделана оптимизация биннирования для новой переменной отклика классификатора BDT.
- Проведено сравнение результата фитирования с использованием двух разных переменных.
- функцию правдоподобия, проведение повторного фитирования

В качестве следующего шага работы планируется добавление систематических погрешностей в

Дополнительные слайды

