Министерство науки и высшего образования Российской Федерации Федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский ядерный университет МИФИ» (НИЯУ МИФИ)

УДК 539.121.667

ОТЧЁТ О НАУЧНО-ИССЛЕДОВАТЕЛЬСКОЙ РАБОТЕ

Изучение ультрапериферических столкновений в тяжелых ионах

Научный руководитель к.ф.-м.н., доцент

____ С. Л. Тимошенко

Студент

_____ А. О. Журкина

Москва2021

Содержание

Введение	2
Цель и мотивация	2
Физика ультрапериферических столкновений	3
Поток фотонов	4
Области изучения UPC	6
Детектирование ультрапериферических столкновений	7
Рождение векторных мезонов в ультрапериферических столк- новениях	8
Изучение данных экспериментов	11
Проделанная работа	15
Представление результатов	16
Заключение	23
Список используемых источников	24

Введение

В 1924 году Ферми разработал метод [1], известный как метод эквивалентных (или виртуальных) фотонов, в котором он рассматривал электромагнитные поля заряженной частицы как поток виртуальных фотонов. Десять лет спустя Вайсзаккер и Уильямс расширили этот подход, включив в него ультрарелятивистские частицы. Движущиеся высокозарядные ионы переносят сильные электромагнитные поля, которые действуют как поле фотонов. Столкновения при больших параметрах удара и адронные взаимодействия невозможны, поэтому ионы взаимодействуют посредством фотон-ионных и фотон-фотонных столкновений, известных как ультрапериферические столкновения.

Цель и мотивация

Изучение ультрапериферических столкновений, физики процессов, применимость и перспективы. Изучение реакции рождения векторного ρ мезона и его распада на два пиона. Рассмотрение распределения $\pi^+\pi^-$ масс в диапазоне 1400-1700 МэВ, для более детального исследования возбужденных состояний $\rho'(1450)$ и $\rho''(1700)$.

Физика ультрапериферических столкновений

Ультрапериферические столкновения, UPC - это реакции, в которых два иона взаимодействуют через свое облако виртуальных фотонов. Интенсивность электромагнитного поля и, следовательно, количество фотонов в облаках, окружающих ядро, пропорциональны Z^2 . Таким образом, эти типы взаимодействий наиболее предпочтительны при столкновении тяжелых ионов.

Рисунок 1 — Принципиальная схема ультрапериферического столкновения двух ионов. Прицельный параметр *b* больше суммы двух радиусов $R_A + R_B$.

На рис. 1 схематично показано ультрапериферическое столкновение тяжелых ионов. Блинная форма ядер обусловлена лоренцевым сжатием. Когда два ядра сталкиваются, могут происходить два типа электромагнитных процессов:

1. фотон-фотонные столкновения - взаимодействия, при которых излучаемые фотоны взаимодействуют друг с другом;

2. фотоядерные столкновения, когда один излучаемый фотон взаимодействует с составной частью другого ядра. Эти два процесса показаны на рис. 2а и 26. На этих диаграммах ядро, излучающее фотон, остается нетронутым после столкновения. На рис. 2в изображено геометрическое представление потоков фотонов в точке вне ядер 1 и 2, при столкновении с прицельным параметром b. Также показано электрическое поле фотонов в этой точке. Однако возможно и ультрапериферическое взаимодействие, при котором одно или оба ядра распадаются. Распад может происходить за счет обмена дополнительным фотоном.

Рисунок 2 — Схематическое изображение электромагнитрых процессов при столкновении двух ядер.

Поток фотонов

При ион-ионном столкновении с прицельным параметром *b*, время взаимодействия $\Delta t \sim b/\gamma V$ [2]. В расчетах ультрапериферических *AB* - столкновений обычно требуется, чтобы прицельный параметр был больше суммы двух ядерных радиусов, $b > R_A + R_B$. Максимально возможный поперечный импульса фотона, испускаемого ядром *A* $p_T \leq \hbar c/R_A$. В продольном направлении максимально возможный импульс умножается на фактор Лоренца, γ , из-за лоренцевского сжатия ионов в этом направлении $k \leq \hbar c \gamma/R_A$. Следовательно, максимальная энергия $\gamma \gamma$ -столкновения в симметричном *A*-столкновении составляет $2\hbar c \gamma/R_A$. В лабораторной системе координат максимальная энергия фотона равна $\omega_{max} = \hbar/\Delta t \sim \gamma \hbar V/b$, где γ - лоренц-фактор частицы, $\gamma = \sqrt{1 - V^2/c^2}$. Для скользящего столкновения, когда два ядра едва соприкасаются, мы можем принять $b_{min} = 2R_A$, а максимальная энергия фотона составляет $\gamma \hbar V/2R_A$ $(R_A = \text{радиус ядра})$. Максимальная энергия фотона составляет примерно $\hbar/2R_AAm_pc$ энергии иона. Здесь Am_p - масса иона. Для тяжелых ионов $R_A \approx 7fm$, так что ω_{max} составляет около 0.03/A энергии ионов. Для протонов R_A не очень хорошо определено, но принятие ω_{max} равным 10% энергии протона является разумным практическим правилом.

Таблица 1 — Некоторые виды ионов, максимальная энергия и светимость для нескольких ускорителей. Также показаны максимальные эффективные энергии γp и $\gamma \gamma$. Для протонных пучков максимальная эффективная энергия фотонов принята равной 10% от энергии протонов, хотя существует некоторый поток при более высоких энергиях.

Accelerator	Ions	Max. Energy (CM)	Luminosity	Max. γA	Max. $\gamma\gamma$
		per Nucleon pair		Energy	Energy
RHIC	Au+Au	200 GeV	4×10^{26}	$24 \mathrm{GeV}$	6.0 GeV
RHIC	p+p	$500 {\rm GeV}$	6×10^{30}	$79 {\rm GeV}$	$50 \mathrm{GeV}$
LHC	Pb+Pb	5.6 TeV	10^{27}	$705 \mathrm{GeV}$	178 GeV
LHC	p+p	14 TeV	10^{34}	3.1 TeV	1.4 TeV

Области изучения UPC

Существуют три области двухфотонной физики, которые могут быть изучены с помощью UPC на LHC: процессы QED в сильных электромагнитных полях; процессы QCD; поиски новой физики. При низких энергиях фотонов можно изучать процессы QED в сильных электромагнитных полях. При более высоких энергиях фотонов могут представлять интерес двухфотонные процессы QCD. Большой поток фотонов позволяет более детально изучать процессы, которые можно отделить от дифракционных процессов $\gamma A \to X A$. В двойном векторном рождении мезонов могут быть изучены не только легкие мезоны типа ρ_0 , но также $J/J\Psi/\Psi$ или пары двух разных векторных мезонов. Образование пар векторных мезонов можно отличить от образования двух независимых векторных мезонов некогерентного γA -рассеяния, поскольку поперечные импульсы двух векторных мезонов, образующихся в $\gamma\gamma$ -процессах, гораздо больше и взаимосвязаны. Большой поток фотонов мотивировал предыдущие новые физические исследования, такие как Хиггс и образование суперсимметричных частиц в двухфотонных взаимодействиях. Однако экспериментальные ограничения на массы многих новых частиц увеличились в последние годы, что делает их открытие в $\gamma\gamma$ -процессах на LHC маловероятным. И все же хотя поперечные сечения невелики, высокие энергии, длинные пробеги, большая светимость пучка и высокий диапазон инвариантных масс в столкновениях двух фотонов дают некоторые преимущества.

Детектирование ультрапериферических столкновений

События центральных столкновений характеризуются очень высокой множественностью. Поэтому все основные детекторы тяжелых ионов настроены на обработку большого количества данных в этом случае. С другой стороны, множественность ультраериферических столкновений сравнительно невелика. Ионы не сильно взаимодействуют друг с другом и движутся практически без возмущений в направлении пучка. Необходимо принимать во внимание фон. Изучены несколько основных источников фона для двухфотонных процессов: периферийные адронные ядерные столкновения, взаимодействие пучка с газом, космические лучи, фотонно-ядерные столкновения и померонные процессы. Космические лучи и газовые реакции в пучке представляют собой проблему, главным образом, на стадии запуска, потому что более точный анализ данных на более поздней стадии отклоняет такие события. Подробное моделирование методом Монте-Карло было выполнено для отделения сигнала от фона. Было обнаружено, что наиболее важными критериями, которые отличают $\gamma\gamma$ -события от фона, являются 3:

1. множественность: многие двухфотонные реакции, которые могут быть обнаружены на RHIC, имеют две или четыре заряженных частицы в конечном состоянии;

2. сумма поперечного импульса частиц в конечном состоянии должна быть маленькой, порядка $\sqrt{2\hbar c/R}$;

Рождение векторных мезонов в ультрапериферических столкновениях

Как было описано выше одной из наиболее интенсивно изучаемых реакций UPC является реакция рождения векторных мезонов. Рождение векторных мезонов происходит через виртуальный фотон γ^* посредством процесса $\gamma^* p \to V p$. Этот процесс обычно рассматривается как трехступенчатый; виртуальный фотон γ^* флуктуирует в пару $q\bar{q}$, которая взаимодействует с протоном и адронизируется в векторный мезон V. Рождение мезонов с вектором основного состояния, $V = \rho, \omega, \Phi, J/\Psi, \gamma$. Эксклюзивное $\pi^+\pi^-$ производство было измерено ранее в аннигиляционном процессе $e^+e^- \rightarrow \pi^+\pi^-$, а также в фотопроизводстве. Распределение $\pi^+\pi^-$ масс показывает сложную структуру в диапазоне масс 1000-2000 МэВ. Представлены доказательства наличия двух возбужденных состояний векторных мезонов в области 1600 МэВ: $\rho'(1450)$ и $\rho''(1700)$. Для мезона $\rho'(1450)$ доминирующим распадом является 4π - распад, для мезона $\rho''(1700)$ - 2π . Теоретический анализ согласованности 2*π*- и 4*π*- электромагнитных форм факторов и длины $\pi\pi$ -рассеяния и полный анализ данных о 2π - и 4π - конечных состояниях в e^+e^- аннигиляции и реакциях фоторождения, позволил утверждать, что для получения согласованной картины необходимо два резонанса. Предполагается, что $\rho'(1450)$ является преимущественно радиально возбужденным 2S-состоянием, а $\rho''(1700)$ - орбитально возбужденным 2D-состоянием. Кроме того, существует еще мезон $\rho_3(1690)$ со спином 3, который имеет моду $\pi\pi$ -распада. Сценарий с двумя перекрывающимися резонансами подтверждается и другими данными. В интервале 1,35–2,4 ГэВ произведены измерения форм фактора пиона и обнаружен глубокий минимум около 1,6 ГэВ. Наилучшее соответствие было получено с гипотезой *р*-подобных резонансов при 1420 и 1770 МэВ с шириной около 250 МэВ. Решающее свидетельство режима $\pi\pi$ -распада как $\rho'(1450)$, так и $\rho''(1700)$

дает аннигиляция $p\bar{p}$ в состоянии покоя. Высокостатистические исследования распадов $\tau \to \pi \pi \nu_{\tau}$ и $\tau \to 4\pi \nu_{\tau}$ также требуют $\rho'(1450)$, но не чувствительны к $\rho''(1700)$, потому что они слишком близки к массе τ . В недавнем исследовании распада $\tau \to \pi \pi \nu_{\tau}$ с очень высокой статистикой, проведенном в Belle, сообщается о первом наблюдении как $\rho'(1450)$, так и $\rho''(1700)$ в τ распадах. Структура этих ρ -состояний еще не до конца ясна. Различные режимы распада $\rho'(1450)$ и $\rho''(1700)$ наблюдаются при аннигиляции pn и pp, но однозначных выводов сделать нельзя. Необходимо собрать больше данных, чтобы прояснить природу состояний, особенно в диапазоне энергий выше 1,6 ГэВ.

Рисунок 3 — Диаграмма основных и возбужденных состояний легких мезонов.

Изучения данных экспериментов

Ниже приведены примеры экспериментов и реакций, в процессе которых проводился поиск и изучение $\rho''(1700)$.

Experiment	Reaction
BELL	$ au^- o \pi^- \pi^0 u_ au$
ZEUS	$e \ p \to \pi^+ \pi^- p$
RVUE	$e^+e^- ightarrow \pi^+\pi^-$
BABR	$e^+e^- o \pi^+\pi^-\gamma$
OBLX	$0.0 \ \bar{p}p ightarrow \pi^+\pi^-\pi^0$

Рисунок 4 — Примеры экспериментов и реакций, в процессе которых проводился поиск и изучение $\rho''(1700)$.

Были изучены публикации эксперимента ZEUS, в процессе которых получены распределения по поперечному импульсу, по инвариантной массе пионов и зависимость отношения поперчных сечений $\sigma(\rho')/\sigma(\rho)$ и $\sigma(\rho'')/\sigma(\rho)$ от параметра Q^2 .

Рисунок 5 — Распределение по поперечному импульсу.

Рисунок 6 — Распределение по инвариантной массе пионов.

Рисунок 7 — Зависимость отношения поперчных сечений $\sigma(\rho')/\sigma(\rho)$ и $\sigma(\rho'')/\sigma(\rho)$ от параметра Q^2 .

Проведенная работа

В течение семестра была проведена ознакомительная работа с теоретическими материалами и литературой о возбужденном состоянии ρ мезона. Проведено ознакомление со стратегией анализа данных, пройден туториал, в процессе которого был написан софт для непосредственного анализа данных, на основании которого был написан собственный макрос. С помощью написанного макроса удалось проанализировать данные, содержащиеся в трех датасетах, имеющие облачное хранение. Анализ произведен в качестве «отладки» программы и для проверки ее корректной работы перед запуском в GRID. Целью анализа был поиск $\rho''(1700)$ в двухканальном распаде. В качестве результатов анализа получены распределения по поперечному импульсу и псевдобыстроте для одного трека и для суммы двух треков, распределение по инвариантной массе. Также было построено распределение количества треков в событие.

Рисунок 8 — Распределение по количеству треков в событие.

Рисунок 9 — Распределение по поперечному импульсу p_T для одного трека.

Рисунок 10 — Распределение по псевдобыстроте η для одного трека.

Transverse momentum

Рисунок 11 — Распределение по поперечному импульсу p_T для суммы двух треков.

Рисунок 12 — Распределение по инвариантной массе пионов.

Рисунок 13 — Распределение по инвариантной массе пионов.

PseudoRapidity

Рисунок 14 — Распределение по псевдобыстроте η для суммы двух треков.

Заключение

Малая множественность и небольшой фон ультрапериферических столкновений (особенно по сравнению с центральными столкновениями) это хорошие условия для поиска новой физики. В следующем году планируется новый запуск, который будет обладать еще более высокими энергетическими характеристиками, что позволит расширить области изучения UPC. Для того, чтобы иметь возможность получения доступа к данным будущих экспериментов и непосредственного участия в них необходимо глубже изучить данный тип столкновений и провести более детальный анализ данных, полученных на сегодняшний день. Что касается изучения р- подобных резонансов необходимо более тщательно изучить результаты экспериментов, имеющихся на данный момент и провести более глубокий и тщательный собственный анализ. Для этого необходимо завершить запуск в GRID написанного макроса. После чего появится доступ к необходимым данным и возможность получить большую статистику распределений. На данный момент с запуском в GRID возникли технические трудности, которые находятся в процессе обсуждения и решения со специалистами поддержки. Этот процесс занял много времени, в связи с чем анализ был проведен недостаточно тщательно. В последствие планируется наложить ограничения на некоторые характеристики, учесть фон, что может позволить более детально изучить $\rho''(1700)$. Глобальной задачей является получение отношения поперчных сечений $\sigma(\rho'')/\sigma(\rho)$. Одним из этапов которой является получение отношения количества частиц $N(\rho'')/N(\rho)$.

Список используемых источников

- Baur G. Coherent γγ and γA interactions in very peripheral collisions at relativistic ion colliders // Physics Reports. — 2002. — Vol. 364, no. 5. — P. 359–450. — ISSN 0370-1573. — URL: http://dx.doi. org/10.1016/S0370-1573(01)00101-6.
- Bertulani C. A., Klein S. R., Nystrand J. PHYSICS OF ULTRA -PERIPHERAL NUCLEAR COLLISIONS // Annual Review of Nuclear and Particle Science. — 2005. — Vol. 55, no. 1. — P. 271–310. — ISSN 1545-4134. — URL: http://dx.doi.org/10.1146/annurev.nucl.55. 090704.151526.
- Klein S. R. Ultra-peripheral collisions and hadronic structure // Nuclear Physics A. — 2017. — Vol. 967. — P. 249–256. — ISSN 0375-9474. — URL: http://dx.doi.org/10.1016/j.nuclphysa.2017.05.098.