Министерство науки и высшего образования Российской Федерации Федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский ядерный университет «МИФИ» (НИЯУ МИФИ)

УДК 537.531.3

ПРЕДДИПЛОМНАЯ ПРАКТИКА НА ТЕМУ

МОДЕЛИРОВАНИЕ ДЕТЕКТОРА ПЕРЕХОДНОГО ИЗЛУЧЕНИЯ ДЛЯ ИДЕНТИФИКАЦИИ АДРОНОВ В ТЭВНОЙ ОБЛАСТИ ЭНЕРГИЙ С ПОМОЩЬЮ ПАКЕТА ПРОГРАММ GEANT4

Научный руководитель

_____ В. О. Тихомиров

Студент

_____С. А. Нечаева

Москва 2021

ОГЛАВЛЕНИЕ

Bı	веде	ние	4			
1	Программный пакет GEANT4					
2	Эксперимент по тестированию прототипов ДПИ на основе тон-					
	кос	тенных пропорциональных камер	7			
	2.1	Экспериментальная установка	7			
	2.2	Модель эксперимента в программном пакете GEANT4	9			
		2.2.1 Моделирование физических процессов	9			
3	Детектор Large TRD					
	3.1	Модель детектора в программном пакете GEANT4	13			
	3.2	Эффективность идентификации адронов	14			
	3.3	Адронные события	16			
		3.3.1 Методы отбора адронных событий	17			
	3.4	Концепция дополнительной конфигурации ДПИ	21			
C	писо	к литературы	24			

ВВЕДЕНИЕ

В современной физике высоких энергий актуальной проблемой является идентификация адронов с энергиями LHC (1 - 6 ТэВ, что соответствует гаммафакторам в интервале от 10^3 до 3.6×10^4)[1]. Благодаря зависимости энергии и количества фотонов переходного излучения (ПИ) от гамма-фактора частицы, детекторы переходного излучения могут быть использованы для разделения подобных частиц. С целью изучения физики адронов под малыми углами проектируется новый эксперимент – SAS (Small Angular Spectrometer)[1]. Предполагается, что детектор переходного излучения (ДПИ) на основе тонкостенных пропорциональных камер (ТПК) – Large TRD (Large Transition Radiation Detector), будет являться одной из составляющих SAS и должен служить для идентификации частиц. Для расчета оптимальных параметров SAS требуется создание его полноценной компьютерной модели. Подобную модель была реализована с помощью программ пакета программ для моделирования прохождения частиц сквозь вещество GEANT4 [2].

В данной работе рассматривается полноценная компьютерная модель детектора ПИ Large TRD, построенная с помощью пакета программ GEANT4, основой для которой являлась аналогичная модель эксперимента по тестированию прототипов ДПИ на основе тонкостенных пропорциональных камер [3]. Также производится сравнение данных моделирования с помощью GEANT4 и с помощью программы Atlsim MC [3; 4], базирующейся на GEANT3 и производится краткий анализ вклада адронных взаимодействий в этих моделях.

С помощью построенной модели GEANT4 были оценены эффективности идентификации адронов (заряженных пи-мезонов, каонов и протонов) энергий 1–6 ТэВ с учетом и без учета адронных взаимодействий с веществом детектора, а также произведено их сравнение с результатами моделирования с помощью Atlsim.

Был предложен метод отбора адронных событий с целью их последующего отбрасывания с целью повышения эффективности корректной идентификации адронов, а также было оценена эффективность данного метода. С целью повышения эффективности идентификации адронов в энергетическом диапазоне 1 – 3 ТэВ была предложена модификация основной конфигурации ДПИ Large TRD, в дальнейшем планируется построение компьютерной модели данной конфигурации с помощью GEANT4, а также оценка эффективностей корректной идентификации адронов с помощью предложенной конфигурации.

1. ПРОГРАММНЫЙ ПАКЕТ GEANT4

GEANT4[2] (англ. GEometry ANd Tracking – геометрия и трекинг) – это бесплатный программный пакет, состоящий из инструментов, которые способны точно моделировать прохождение частиц через вещество.

Все аспекты процесса моделирования были включены в инструментарий[2]:

- геометрия системы,
- используемые материалы,
- интересующие частицы,
- генерация первичных событий,
- физические процессы, регулирующие взаимодействия частиц,
- отслеживание треков частиц сквозь материалы и электромагнитные поля,
- отклик чувствительных компонентов детектора,
- генерация данных о событии,
- хранение событий и треков,
- визуализация детектора и траекторий частиц,
- сбор и анализ данных моделирования с различными уровнями детализации и уточнения.

GEANT4 впервые (в отличие от GEANT3, написанного на языке FORTRAN) включает в себя программные пакеты, предназначенные для моделирования переходного излучения, тем самым предоставляя большие возможности для моделирования детекторов переходного излучения.

2. ЭКСПЕРИМЕНТ ПО ТЕСТИРОВАНИЮ ПРОТОТИПОВ ДПИ НА ОСНОВЕ ТОНКОСТЕННЫХ ПРОПОРЦИОНАЛЬНЫХ КАМЕР

2.1. ЭКСПЕРИМЕНТАЛЬНАЯ УСТАНОВКА

Рисунок 2.1 — Фотография (сверху) и схема эксперимента по тестированию прототипов ДПИ

Тестирование прототипов ДПИ на основе ТПК производилось на тестовом пучке ускорителя SPS в CERN (Швейцария) летом 2018 года [3].

Экспериментальная установка на основе ДПИ состоит из радиаторов ПИ, тонкостенных пропорциональных камер (ТПК), а также из триггерной системы. Данные элементы расположены перпендикулярно тестовому пучку. В установке используется 12 радиаторов ПИ: сначала пучок проходит через два радиатора, далее радиаторы ПИ чередуются со слоями цилиндрических пропорциональных камер (ТПК), имеющих форму трубок (см. Рисунок 2.1): после каждого радиатора размещено по 2 слоя ТПК, по 5 трубок в каждом слое. Аналогичные трубки применяются в TRT [5] (Transition Radiation Tracker, эксперимент ATLAS [6], CERN). В данном эксперименте для ТПК была использована газовая смесь, состоящая из 71.8% Хе, 25.6% СО₂ и 2.6% О₂, и находящаяся под давлением 1 атмосфера. Газовое усиление смеси порядка $\sim 2.5 \times 10^4$. Внешний вид и схема установки приведены на Рисунке 2.1.

В Таблице 2.1 приведены параметры радиаторов различных конфигураций прототипа ДПИ, при этом каждый радиатор ПИ состоит из 15 фольг, разделенных слоем воздуха. В каждой из конфигураций установки использовался только 1 тип радиаторов. В качестве дополнительной конфигурации была использована конфигурация без радиаторов ПИ.

Триггерная система (см. Рисунок 2.1) состоит из сцинтилляторных счетчиков (в скобках указаны площади поверхностей этих счетчиков, перпендикулярных пучку):

- S2 $(20 \times 20 \text{ mm}^2)$,
- S3 $(25 \times 25 \text{ mm}^2)$,
- PS (Preshower scintillator) $(50 \times 130 \text{ MM}^2)$,
- MC (Multipilicity counter) $(50 \times 80 \text{ mm}^2)$,

а также из калориметра Lead glass (100 \times 100 ${\rm MM}^2),$ выполненного из свинцового стекла.

В качестве частиц пучка в использовались электроны, заряженные пимезоны и мюоны; их энергии и соответсвующие Лоренц-факторы приведены в Таблице 2.2.

Калибровка отклика каждой из газовых пропорциональных камер осуществлялась с помощью источника ⁵⁵Fe[3].

материал	толщина фольг, мкм	шаг, мм	плотность, Γ/cM^3	
майлар	50	3	1.389	
	67	2	0.054	
полиэтилен	07	3	0.304	
	91	2.3	0.946	

Таблица 2.1 — Параметры тестируемых радиаторов ПИ

Частицы	Энергия	γ -фактор
e ⁻	20 F2B	3.9×10^4
π^{-}	20 I 9D	0.14×10^3
	120 ГэВ	1.14×10^{3}
μ^-	180 ГэВ	1.80×10^{3}
	290 ГэВ	2.74×10^3

Таблица 2.2 — Лоренц-факторы частиц пучка

2.2. МОДЕЛЬ ЭКСПЕРИМЕНТА В ПРОГРАММНОМ ПАКЕТЕ GEANT4

С помощью программного пакета GEANT4 [2] была построена компьютерная модель эксперимента по тестированию прототипов ДПИ для следующих конфигураций:

- конфигурация без радиаторов ПИ,
- конфигурация с майларовыми радиаторами (см. Таблицу 2.1),
- 3 конфигурации с полиэтиленовыми радиаторами (параметры радиаторов см в Таблице 2.1).

2.2.1. МОДЕЛИРОВАНИЕ ФИЗИЧЕСКИХ ПРОЦЕССОВ

Основные электромагнитные процессы (ионизация, множественное рассеяние, Комптон-эффект, тормозное излучение и т.д.) в модели описаны с помощью класса G4EmStandardPhysics. Ионизация в тонких слоях вещества, а именно в газовой смеси детектора, описана с помощью класса G4PAIModel. Переходное излучение было описано с помощью G4VXTRenergyLoss и

G4TransparentRegXTRadiator, так как радиаторы в экспериментальной установке являются «регулярными» [7]: у этих радиаторов на протяжении всей длины не меняются такие параметры как плотность и толщина фольг, а так же плотность газового (в данном случае воздушного) промежутка между фольгами и его длина. Моделирование адронных взаимодействий (упрогое, неупругое взаимодействие адронов с ядрами, а также процессы захвата и деления) в модели осуществляется с помощью класса G4HadronPhysicsFTFP_BERT [8], данный адронный физический лист является рекомендованным для использования в моделях коллайдерных экспериментов.

Рисунок 2.2 — Дифференциальные спектры энерговыделений в детекторе: красным – экспериментальные данные, синим – модель GEANT4, зеленым – модель Atlsim

3. ДЕТЕКТОР LARGE TRD

Рисунок 3.1 — Схема проектируемого детектора Large TRD

В качестве основной конфигурации Large TRD рассматривается детектор, состоящий из двух под-детекторов [9]. В первом под-детекторе предполагается применять радиаторы, состоящие из 30 фольг из полиэтилена с толщиной фольг 25 мкм и расстоянием между ними 500 мкм. Детектирующая часть состоит из сдвоенных слоев TПК диаметром 4 мм с газовой смесью на основе ксенона при нормальном давлении. Всего первый под-детектор будет содержать 50 таких секций (100 слоев TПК). Следующий за первым второй под-детектор предполагается состоящим из 100 секций «радиатор – сдвоенный слой TПК». Каждый радиатор здесь будет состоять из 12 фольг толщиной 75 мкм и расстояниями между фольгами 3 мм. Поскольку во втором под-детекторе образующиеся в радиаторах кванты ПИ будут иметь более «жесткий» энергетический спектр, для их эффективного поглощения предполагается увеличить давление рабочего газа в TПК до 1.5 атм. Общая длина данного варианта полномасштабного ДПИ должна составить около 6 м.

Разные параметры двух под-детекторов позволят получить разные характеристики излучаемых и поглощенных в них квантов ПИ и таким образом – различные зависимости отклика детектора от Лоренц-фактора регистрируемой частицы (см. Рисунки 3.2 и 3.3). В первом под-детекторе энергетические спектры квантов ПИ получаются более «мягкими», что дает возможность для

Рисунок 3.2 — Среднее число «сработавших» ТПК с разным энерговыделением в двух под-детекторах в зависимости от энергии регистрируемых адронов [9]

Рисунок 3.3 — Среднее число «сработавших» ТПК с разным энерговыделением в двух под-детекторах в зависимости от Лоренц-фактора регистрируемых адронов [9]

идентификации частиц с относительно небольшими Лоренц-факторами: ~ 10^3 – 6×10^3 . Второй под-детектор дает более «жесткие» спектры ПИ, что сдвигает Лоренц-зависимости в область больших гамма-факторов. Относительно высокий выход квантов ПИ большой энергии позволяет выделить во втором под-детекторе две области для подсчета числа сработавших ТПК: первую – с энерговыделением в камерах от 8 кэВ до 17 кэВ, и вторую – с энерговыделением больше 17 кэВ [9].

Как видно из Рисунка 3.3, Лоренц-зависимости этих двух областей регистрируемой в камерах энергии имеют разный характер, что опять же расширяет диапазон Лоренц-факторов, в котором возможна идентификация частиц.

3.1. МОДЕЛЬ ДЕТЕКТОРА В ПРОГРАММНОМ ПАКЕТЕ GEANT4

На основе модели эксперимента по тестированию прототипов ДПИ в GEANT4 была построена аналогичная модель основной конфигурации проектируемого детектора Large TRD. Способ задания физических процессов в модели Large TRD и базовой модели полностью идентичен. В качестве частиц пучка использовался следующий набор частиц:

- заряженные пионы энергий 1, 2, 3, 4, 5, 6 ТэВ,
- заряженные каоны энергий 1, 2, 3, 4, 5, 6 ТэВ,
- протоны энергий 1, 2, 3, 4, 5, 6 ТэВ.

Модель позволяет получать набор энерговыделений в каждом слое ТПК детектора для каждого события, то есть ожидаемый отклик детектора. Этот набор данных позволяет оценить в частности эффективность идентификации адронов.

Для сравнения моделей GEANT4 и Atlsim были построены дифференциальные и интегральные спектры энерговыделений, усредненные по всем слоям для каждого из двух под-детекторов. В ходе сравнения моделей было выявлено, что спектры энерговыделений больше согласуются друг с другом при условии, что в модели GEANT4 активированы только электромагнитные процессы. На Рисунке 3.4 приведено сравнение дифференциальных и интегральных спектров энерговыделений для пионов 1 ТэВ для моделей:

- красным: модель GEANT4; активированы только электромагнитные процессы, адронные процессы отключены,
- синим: модель GEANT4; активированы как электромагнитные процессы, так и адронные,
- зеленым: модель Atlsim.

Как видно из этого примера, наилучшее согласие между моделями Atlsim и GEANT4 в формах спектров энерговыделений соответствует случаю, когда адронные процессы в модели GEANT4 не активированы. Это может свидетельствовать о некорректном моделировании адронных процессов в специализированной программе Atlsim.

Рисунок 3.4 — Спектры энерговыделений в ДПИ для π^+ 1 ТэВ (сверху – диф-ференциальный, снизу – интегральный)

3.2. ЭФФЕКТИВНОСТЬ ИДЕНТИФИКАЦИИ АДРОНОВ

На основе наборов энерговыделений в каждом слое ДПИ в каждом событии с помощью специализированной программы методом максимального правдоподобия производится вычисление эффективностей идентификации адронов для каждой частицы из набора.

Процесс вычисления происходит следующим образом. Выбирается 3 энергетических интервала для энерговыделений в слоях ДПИ:

- 1) первый под-детектор: Е > 6 кэВ,
- 2) второй под-детектор: 8 к
э ${\rm B} < {\rm E} < 17$ кэ ${\rm B},$
- 3) второй под-детектор: E > 17 кэВ.

Далее для каждого из выбранных интервалов для каждого события из части всего набора событий (например, 80 000, если полная статистика 100 000) определяется число слоев ТПК, энерговыделения в которых попадают в данный интервал. Затем для каждого интервала и сорта первичных частиц (π^+ , K^+

Рисунок 3.5 — Распределение по числу ТПК с энерговыделениями, попавшими в определенный интервал

или p^+) определенной энергии из набора строятся референсные распределения числа слоев ТПК, с энерговыделениями, попавшими в интервал. Пример таких распределений для 2 ТэВ продемонстирован на Рисунке 3.5.

Далее для другой части набора событий (для выбранного примера – 20 000) производится следующая процедура. Для каждого события известен набор из 3 чисел – количеств ТПК с энерговыделениями, попавшими в каждый из 3 интервалов. С помощью референсных спектров для каждого интервала далее определяются вероятности, с которыми частица может принадлежать к определенному сорту – P_{1k} , P_{2k} , P_{3k} , где k – сорт частицы (π^+ , K^+ или p^+). Далее эти вероятности перемножаются и рассматриваются величины $L_k = P_{1k}P_{2k}P_{3k}$, из которых выбирается максимальное – L_i , и частица идентифицируется, как частица сорта i. Эффективностью идентификации каждого сорта частиц будет величина, равная доле частиц верно идентифицированных с помощью выше описанного способа. На рисунке 3.6 изображены значения эффективностей корректной идентификации положительно заряженных пионов и каонов, а также протонов с энергиями 1–6 ТэВ для следующих моделей:

- красным: модель GEANT4; активированы только электромагнитные процессы, адронные процессы отключены,
- синим: модель GEANT4; активированы как электромагнитные процессы, так и адронные,
- зеленым: модель Atlsim.

Различия в эффективностях корректной идентификации в большей части обусловлена различием в форме спектров энерговыделений в слоях ДПИ, которое было продемонстировано ранее (см рисунок 3.4). Как видно из рисунка

Рисунок 3.6 — Эффективность корректной идентификации каждого типа частиц в интервале энергий 1–6 ТэВ: красным – модель GEANT4 без адронных взаимодействий, синим – модель GEANT4 с адронными взаимодействиями, зеленым модель Atlsim [4; 9]

3.6, эффективноть идентификации адронов ниже для модели с учетом адронных взаимодействий с веществом детектора. Для повышения эффективности идентификации частиц следует найти способ отбора событий, в которых происходило хотя бы одно адронное взаимодействие.

3.3. АДРОННЫЕ СОБЫТИЯ

Моделирование адронных взаимодействий производится с помощью модуля физического листа FTFP_BERT [8]. Данный модуль был верифицирован и рекомендован разработчиками GEANT4 для моделирования детекторов в физике высоких энергий. Адронные взаимодействия включают в себя упругие, неупругие взаимодействия адронов с ядрами вещества, а также распад и ядерный захват. Здесь и далее под «адронным событием» будет пониматься такое событие, в котором происходило хотя бы одно адронное взаимодействие. С целью отбора адронных событий для последующего отбрасывания были в целом с помощью средств программного пакета GEANT4 проанализированы адронные события в детекторе. Были выявлены следующие закономерности:

 Вероятность того, что событие будет адронным (то есть что в событии произойдет хотя бы одно адронное взаимодействие) составляет порядка 23 — 30% в зависимости от сорта и энергии частицы. В данном диапазоне минимальное значение – 23% соответствует заряженным пи-мезонам с энергией 1 ТэВ, а максимальное значение 30 % – протонам с энергией 6 ТэВ.

- 2) Большая часть адронных событий приходится на вещество радиаторов ДПИ. Вероятность того, что хотя бы адронное взаимодействие произойдет в объеме радиатора составляет до 17–25% (в первом под-детекторе – 5– 8%, во втором – 14–22%).
- Вероятность того, что хотя бы адронное взаимодействие произойдет в рабочем газе детектора составляет < 0.8%.

3.3.1. МЕТОДЫ ОТБОРА АДРОННЫХ СОБЫТИЙ

Для повышения эффективности идентификации адронов, требуется выработать метод отбора адронных событий с последующим отбрасыванием.

Рассмотрим следующую величину: просуммируем все ненулевые энерговыделения Edep в слоях ТПК, затем разделим на число слоев ТПК N_{act} , где это энерговыделение было ненулевым:

$$\langle E \rangle_{act} = \frac{\sum\limits_{i} Edep_i}{N_{act}}$$

$$(3.1)$$

Также для событий с адронными взаимодействиями можно рассмотреть следующую величину:

$$\langle E \rangle_1 = \frac{\sum\limits_k E dep_k}{N_1},\tag{3.2}$$

где $Edep_k$ – энерговыделения в слоях ТПК после последней (по длине) вершины адронного взаимодействия в ДПИ. Суммирование производится в слоях с ненулевыми энерговыделениями; число таких слоев ТПК после последней по длине ДПИ вершины адронного взаимодействия равно N_1 .

На рисунке 3.7а представлены распределения следующих величин для заряженных пионов 1 ТэВ:

- красным распределение по параметру $< E >_1$ для адронных событий,
- зеленым распределение по параметру < E >_{act} для неадронных событий (то есть для событий, где отсутствуют адронные взаимодействия),

• черным — распределение по параметру < $E >_{act}$ для адронных событий. На рисунке изображена вероятность превысить определенный энергетический порог для описанных выше распределений. Таким образом, задачей классифи-

Рисунок 3.7 — Пионы, 1 ТэВ

кации событий является отделение адронных событий от неадронных.

Наиболее простым способом разделения таких событий является выставление порога по величине средних энерговыделений $\langle E \rangle_{act}$ (то есть разделение зеленой и черной кривой на рисунке 3.7):

$$\langle E \rangle_{act} \rangle E_{cut}$$
 (3.3)

Тогда события, превышающие значение E_{cut} будут классифицированы как адронные, а события с $\langle E \rangle_{act} \langle E_{cut}$ будут классифицированы как неадронные.

Рисунок 3.8 — ROC-кривые, характеризующие эффективность классификатора

На рисунках представлены ROC-кривые [10] для пионов 1 ТэВ и протонов 6 ТэВ соответственно. ROC-кривая характеризует эффективность описанного выше бинарного классификатора, где в качестве сигнальных событий выступают адронные взаимодействия. Площадь под кривой (AUC) как для пионов 1 ТэВ, так и для протонов 6 ТэВ составляет 0.86, что говорит о том, что вопервых классификатор работает корректно (т.к. AUC > 0.5), а во-вторых о том, что классификатор достаточно эффективен, поскольку значение AUC близко к 0.9.

Далее с помощью описанного метода выделения адронных событий были отброшены адронные события для всего набора частиц.

Рисунок 3.9 — Спектры энерговыделений в ДПИ для π^+ 1 ТэВ (сверху – дифференциальный, снизу – интегральный)

Рисунок 3.10 — Спектры энерговыделений в ДПИ для p^+ 6 ТэВ (сверху – диф-ференциальный, снизу – интегральный)

На рисунках 3.9 и 3.10 приведено сравнение результатов моделирования с помощью GEANT4 для пионов 1 ТэВ и для протонов 6 ТэВ соответственно:

- красным: модель GEANT4; активированы только электромагнитные процессы, адронные процессы отключены,
- синим: модель GEANT4; активированы как электромагнитные процессы, так и адронные; часть событий отброшена с помощью критерия $\langle E \rangle_{act}$ $\langle E_{cut},$
- зеленым: модель GEANT4; активированы как электромагнитные процессы, так и адронные,

Пороговым значением в данном случае было выбрано среднее энерговыделение 10 кэВ, однако в дальнейшем эта величина может быть уточнена для различных энергий первичных частиц.

Как можно видеть на рисунках 3.9 и 3.10, после выполненного отбора спектры энерговыделений для модели GEANT4 с активированными адронными взаимодействиями и для модели GEANT4 с выключенными адронными взаимодействиями почти совпадают. Это является свидетельством того, что следует ожидать повышение эффективности идентификации адронов в оставшихся со-

3.4. КОНЦЕПЦИЯ ДОПОЛНИТЕЛЬНОЙ КОНФИГУРАЦИИ ДПИ

Рисунок 3.11 — Схема предлагаемого ДПИ, состоящего из 3 под-детекторов

Среди набора адронов (π^+ , K^+ , p^+) энергий 1 — 6 ТэВ наибольшую практическую пользу несут адроны энергий 1 — 3 ТэВ. С целью повысить эффективность их идентификации основная конфигурация Large TRD может быть модифицирована, а именно, в этом случае следует добавить дополнительный под-детектор на основе ТПК, состоящий из радиаторов ПИ, генерирующих более мягкий спектр ПИ. Каждый из под-детекторов должен состоять из блоков «радиатор ПИ + 2 слоя ТПК» по 5 ТПК в каждом слое. Предлагаются следующие параметры ДПИ:

- Под-детектор 1: 30 блоков, радиаторы ПИ состоят из полиэтиленовых фольг толщиной 15.5 мкм, промежуток между фольгами 220 мкм, 40 фольг в радиаторе; давление газа в ТПК 1 атм,
- Под-детектор 2: 45 блоков, радиаторы ПИ состоят из полиэтиленовых фольг толщиной 25 мкм, промежуток между фольгами 500 мкм, 30 фольг в радиаторе; давление газа в ТПК 1 атм,
- Под-детектор 3: 95 блоков, радиаторы ПИ состоят из полиэтиленовых фольг толщиной 75 мкм, промежуток между фольгами 3 мм, 12 фольг в радиаторе; давление газа в ТПК 1.5 атм.

Общая длина такого ДПИ, как и в случае основной конфигурации должна составить порядка 6 м. В дальнейшем планируется с помощью программного пакета GEANT4 создать модель этой конфигурации и оценить эффективность идентификации адронов энергий 1 — 3 ТэВ.

ЗАКЛЮЧЕНИЕ

В рамках данной работы с помощью пакета программ для моделирования прохождения частиц сквозь вещество GEANT4 была построена модель проектируемого полномасштабного детектора переходного излучения Large TRD, который планируется применять для идентификации заряженных адронов (пионов, каонов и протонов) энергий 1 – 6 ТэВ. Было произведено сравнение результатов моделирования с помощью GEANT4 с учетом и без учета адронных взаимодействий в веществе детектора с результатами моделирования данного детектора с мощью специализированной программы Atlsim [3; 4], базирующейся на GEANT3. В ходе сравнения спектров энерговыделений в слоях ТПК, было выявлено, что модель Atlsim демонстрирует лучшее согласие с данными моделирования GEANT4, в которых не учитываются адронные взаимодействия с веществом детектора. Причиной данного эффекта может являться некорректное моделирование адронных процессов (или его отсутствие) в модели Atlsim, которое не было выявлено ранее по причине того, что верификация модели Atlsim производилась путем сравнения с данными экспериментов по тестированию прототипов ДПИ, в которых максимальный процент адронных событий мал $\sim 3\%,$ в то время как вклад адронных событий в проектируемом детекторе Large TRD ожидается порядка 23 – 30%.

Также в ходе данной работы были оценены эффективности корректной идентификации заряженных адронов (пионов, каонов и протонов) энергий 1 – 6 ТэВ с помощью модели GEANT4 проектируемого детектора Large TRD, а также произведено сравнение этих величин для модели GEANT4 без адронных взаимодействий, модели GEANT4 с учетом адронных взаимодействий и модели Atlsim. Было выявлено, что эффективности идентификации адронов для моделей Atlsim и GEANT4 без учета адронных взаимодействий отличаются, и это отличие может быть обусловлено различиями в формах спектров энерговыделений в слоях ТПК для всего набора частиц. Также было замечено, что эффективность идентификации адронов для модели GEANT4 с учетом адронных взаимодействий ниже, чем для модели GEANT4 без учета адронных взаимодействий (максимальная разница составляет 8%).

С целью повышения эффективности идентификации адронов был предложен способ отбора адронных событий и оценена его применимость с помощью ROC-кривой [10]. Также было произведено сравнение спектров энерговыделений для модели GEANT4 без учета адронных взаимодействий, модели GEANT4 с учетом адронных взаимодействий и модели GEANT4 с учетом адронных взаимодействий, в которой часть событий было отброшено с помощью предложенного метода отбора. В результате сравнения было выявлено, что спектры после отбора событий становятся очень близки к спектрам энерговыделений для модели без учета адронных взаимодействий, что также говорит об эффективности выбранного метода отбора. В дальнейшем планируется поиск альтернативных методов отбора адронных событий с целью оптимизации разделения.

С целью повышения эффективности корректной идентификации адронов энергий 1–3 ТэВ была предложена дополнительная конфигурация ДПИ, состоящая из 3 под-детекторов. В дальнейшем планируется построить компьютерную модель этой конфигурации с помощью GEANT4, а также оценить эффективность идентификации адронов с её помощью.

СПИСОК ЛИТЕРАТУРЫ

- 1. Albrow M. A very forward hadron spectrometer for the LHC and cosmic ray physics // arXiv preprint arXiv:1811.02047. 2018.
- GEANT4 a simulation toolkit / S. Agostinelli [et al.] // Nuclear instruments and methods in physics research section A: Accelerators, Spectrometers, Detectors and Associated Equipment. 2003. Vol. 506, no. 3. P. 250–303.
- Development of Transition Radiation Detectors for hadron identification at TeV energy scale / N. Belyaev [et al.] // Journal of Physics: Conference Series. Vol. 1390. — IOP Publishing. 2019. — P. 012126.
- Test beam studies of possibilities to separate particles with gamma factors above 103 with straw based Transition Radiation Detector / N. Belyaev [et al.] // Journal of Physics: Conference Series. Vol. 934. — IOP Publishing. 2017. — P. 012053.
- The ATLAS Transition Radiation Tracker (TRT) proportional drift tube: design and performance / E. Abat [et al.] // Journal of Instrumentation. — 2008. — Vol. 3, no. 02. — P02013.
- The ATLAS experiment at the CERN large hadron collider / G. Aad [et al.] // Jinst. 2008. Vol. 3. S08003.
- 7. *Гарибян Г. М.*, *Ши Я.* Рентгеновское переходное излучение. Изд-во АН АрмССР, 1983.
- Recent developments in Geant4 / J. Allison [et al.] // Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. — 2016. — Vol. 835. — P. 186– 225. — ISSN 0168-9002.
- A concept of the transition radiation detector for a hadron separation in a forward direction of the LHC experiments / N. Belyaev [et al.] // Journal of Physics: Conference Series. Vol. 1690. — IOP Publishing. 2020. — P. 012043.

10. Fawcett T. An introduction to ROC analysis // Pattern recognition letters. — 2006. — Vol. 27, no. 8. — P. 861–874.