ОПТИМИЗАЦИЯ ОТБОРА СОБЫТИЙ ДЛЯ АНАЛИЗА $ZZ \to I I \nu \nu$ НА ДАННЫХ ЭКСПЕРИМЕНТА ATLAS С $\sqrt{S} = 13$ ТэВ

Зубов Д.В.

нияу мифи

Научный руководитель: Солдатов Е.Ю.

Консультант: Пятиизбянцева Д.Н.

Москва, 2021

Введение

Актуальность и мотивация:

- Прецизионное измерение двухбозонных процессов один из способов проверки Стандартной модели и пертурбативной КХД на масштабе энергий несколько ТэВ
- Измерение aTGC и aQGC является косвенным поиском новой физики
- Многие расширения СМ предсказывают новые скалярные, векторные или тензорные резонансы, которые могут распадаться на пары электрослабых бозонов.
- Векторное рассеяние бозонов (VBS) ключевой процесс для исследования механизма нарушения электрослабой симметрии.

Методика оптимизации

Оптимизация заключается в:

- поиске таких переменных, ограничение которых приводит к подавлению фона при максимальном сохранении сигнала
- поиске оптимального порога на переменные, при котором наблюдается наилучшее подавление фона при наилучшем сохранении сигнала

Критерием наилучшего соотношения сигнал/фон является сигнальная значимость $S.S. = \sqrt{2 \times [(S+B) \times \ln(1+(S/B)) - S]}$

В ходе работы был предложен модернизированный метод оптимизации, который представляет сигнальную значимость как функцию нескольких переменных.

Модернизированный метод оптимизации ищет вектор отборов, при котором достигается максимум сигнальной значимости.

Преимущества нового метода:

- Нет зависимости от порядка, в котором оптимизируются переменные
- Всегда находится наилучшее решение из всех возможных вариантов

Инклюзивный процесс $ZZ ightarrow I\!\!I u u$

- В событии два разноименно-заряженных лептона одного аромата (е+е- или mu+mu-), при этом, поперечный импульс первого больше 30 ГэВ, второго больше 20 ГэВ;
- Вето на третий заряженный лептон;
- ▶ 76 ГэВ < M_{II} < 106 ГэВ;</p>
- *E*^{miss}_τ > 70 Γ₃B.

	Сигнал	
QCD ZZ	КХД рождение двух Z-бозонов и последующий распад в <i>IIvv</i>	
EWK ZZ	Электрослабое рождение двух Z-бозонов и по- следующий распад в <i>II</i> νν	
	Фон]
Zj	рождение Z-бозона и струи, с распадом Z-бозона в пару заряженных лептонов и большим ложным потерянным поперечным импульсом	
WZ	рождение пары бозонов Z и W, с распадом Z- бозона в пару заряженных лептонов и лептонным распадом W	<i>q Z</i>
tt	рождение пары топ-кварков и последующим рас- падом включающим конечное состояние $ll \nu \nu$ (не резонансное рождение $ll \nu \nu$)	
WW	рождение пары W с распадом в <i>IIvv</i> (не резо- нансное рождение <i>IIvv</i>)	
Wt	рождение W и топ-кварка и распадом в конеч- ное состояние, содержащее $ll \nu \nu$ (не резонансное рождение $ll \nu \nu$)	
VVV	рождение трех векторных бозонов (V = W или Z)	
Other (ttV, ttVV)	рождение пары топ-кварков и одного или двух векторных бозонов	

Результаты оптимизации инклюзивного процесса $ZZ \rightarrow I I \nu \nu$

В ходе оптимизации искался максимум сигнальной значимости как функции 6-ти переменных

Переменная	До	После		До	После
E_T^{miss} значимость	—	>10		Сигнал	
E ^{miss} , ГэВ	_	-	QCD ZZ	7596 ±28	1946 ±15
ΔR_{\parallel}	_	<1.8	EWK ZZ	262 ±2	13.0 ±0.4
$\Delta \phi(\vec{E}_T^{miss}, \vec{p}_T^{ll})$	_	>2.3	Total signal	7858 ±28	1959 ±15
Число b-струй	_	<1		Фон	
E ^{miss} /H _T	_	>0.5	Zj	962833 ±4057	181 ±20
/		2010	WZ	11338 ±29	945 ±8
Сигнальная зна-	7 43+0 03	447+04	tt	123340 ±73	131 ±2
чимость	1.45 ± 0.05	44.7 ± 0.4	WW	5093 ±13	64.0 ±1.5
Число сигнальных	7858 +28	1959 ± 15	Wt	10251 ±41	41 ±3
событий	1000 ±20	1555 ±15	VVV	41.8 ±0.3	7.88 ±0.10
Число фоновых	(1123	1370 +22	Other	282 ±2	0.79 ±0.11
событий	$\pm 4) \cdot 10^{3}$	1010 111	Total bkg.	$(1123 \pm 4) \cdot 10^3$	1370 ±22

Полученные результаты приняты группой и используются в анализе

Электрослабый процесс ZZjj ightarrow II u u jj

- В событии два разноименно-заряженных лептона одного аромата (е+е- или mu+mu-), при этом, поперечный импульс первого больше 30 ГэВ, второго больше 20 ГэВ;
- Вето на третий заряженный лептон;
- 76 ΓэB < M_{||} < 106 ΓэB;</p>
- *E*^{miss}_T > 70 ΓэΒ;
- Две и более адронных струй.

	Сигнал	ď
EWK ZZ	Электрослабое рождение двух Z-бозонов и по- следующий распад в $l\!l \nu \nu$	⁴ → <u></u>
	Фон	
QCD ZZ	КХД рождение двух Z-бозонов и последующий распад в $l\!l u u$	سمحر ^{۱۷}
Zj	рождение Z-бозона и струи, с распадом Z-бозона в пару заряженных лептонов и большим ложным потерянным поперечным импульсом	_W ک ^{ر - م} م
WZ	рождение пары бозонов Z и W, с распадом Z- бозона в пару заряженных лептонов и лептонным распадом W	$q \longrightarrow r$
tt	рождение пары топ-кварков и последующим рас- падом включающим конечное состояние $l\!l \nu u$ (не резонансное рождение $l\!l u u$)	g cocco
WW	рождение пары W с распадом в $l l \nu \nu$ (не резонансное рождение $l l \nu \nu$)	
Wt	рождение W и топ-кварка и распадом в конеч- ное состояние, содержащее $l l \nu \nu$ (не резонансное рождение $l l \nu \nu$)	
VVV	рождение трех векторных бозонов (V = W или Z)	
Other (ttV, ttVV)	рождение пары топ-кварков и одного или двух - векторных бозонов _{Зубов} <u>Д.В.</u>	

 \sim_z

Исследование различных вариантов выбора tag-струй

- Сигнатура VBF/VBS процессов две высокоэнергетичные струи, в противоположных торцах детектора с большой быстротой.
- Сравнивались три варианта выбора tag-струй

Переменная	Выбор tag-	Выбор tag-	Выбор tag-
	струй по Ү	струй по Е	струй по р _Т
Е _Т значимость	>7	>7	>7
<i>М_{ј1}ј₂</i> , ГэВ	>550	>550	>550
$\Delta \eta(j_1 j_2)$	>0.8	>1.0	>1.0
$Y(j_1) \times Y(j_2)$	<2.2	<2.4	<2.2
р _Т (j ₁), ГэВ	>40	>60	>80
р _Т (j ₂), ГэВ	>40	>40	>50
Сигнальная значимость	1.34 ± 0.04	1.41 ± 0.04	1.51 ± 0.05
Число сигнальных событий	36.5 ±0.8	35.0 ±0.7	35.1 ±0.7
Число фоновых событий	729 ±31	609 ±31	530 ±30

- Наилучший вариант выбора tag-струй выбор двух струй с наибольшим р_т
- Исследование планируется продолжить на truth уровне

Сравнение переменных, характеризующих вылет видимого Z-бозона относительно tag-струй

- Отказ от отбора событий условием $Y(j_1) imes Y(j_2) < 0$
- Проводилось сравнение эффективности переменных $\Delta Y(Z, j_{max(min)}), \Delta \eta + (-)$ и

•
$$\Delta \eta + (-) = \eta(j_{max(min)}) - \eta(l_{max(min)}), \quad \zeta = \left| \frac{Y(Z) - \frac{Y(J_1) + Y(J_2)}{2}}{Y(J_1) - Y(J_2)} \right|$$

Переменная	$\Delta Y, \Delta \eta$ и ζ	$\Delta\eta$ и ζ	$\Delta \eta$	ΔΥиζ	ΔY	ζ
Е _Т значимость	>6	>6	>6	>6	>6	>6
<i>М_{ј1 ј2}</i> , ГэВ	>600	>600	>600	>600	>600	>600
р _Т (j ₁), ГэВ	>90	>80	>80	>90	>90	>100
р _Т (j ₂), ГэВ	>50	>50	>50	>50	>50	>50
$\Delta Y(Z, j_{max})$	<-0.3	—	-	<-0.3	<-0.3	-
$\Delta Y(Z, j_{min})$	>-0.3	-	_	>-0.3	>-0.3	_
$\Delta \eta +$	<0.9	<0.0	<0.0	-	_	_
$\Delta \eta -$	>-1.2	>-0.5	>-0.5	-	-	_
ζ	no cut	no cut	_	no cut	_	<0.5
Сигнальная зна-	$1.54 {\pm} 0.05$	1.52 ± 0.05	1.52 ± 0.05	$1.54{\pm}0.05$	$1.54{\pm}0.05$	1.51 ± 0.05
чимость						
Число сигнальных событий	35.3±0.7	35.0±0.7	35.0±0.7	35.3±0.7	35.3 ±0.7	35.2±0.7
Число фоновых событий	513±29	516±29	516±29	514±29	514±29	534±29

- Отличие результатов разных вариантов оптимизации не превосходит их погрешности

Исследование эффективности переменной p_T -balance

$$p_{T}\text{-balance} = \frac{\left|\vec{E}_{T}^{miss} + \vec{p}_{T}^{Z} + \vec{p}_{T}^{j_{1}} + \vec{p}_{T}^{j_{2}}\right|}{E_{T}^{miss} + p_{T}^{Z} + p_{T}^{j_{1}} + p_{T}^{j_{2}}}$$

Variable	All	No p _T -balance
E ^{miss} signif.	>6	>6
<i>М_{j1j2},</i> ГэВ	>550	>550
<i>р_Т</i> (j ₁), ГэВ	>80	>80
р _Т (j ₂), ГэВ	>40	>40
Е ^{miss} , ГэВ	>100	>100
р _Т (Z), ГэВ	>20	>20
$\Delta Y(Z, j_{max})$	<0.3	<0.3
$\Delta Y(Z, j_{min})$	>-0.3	>-0.3
p _T -balance	<0.14	—
Signal signif.	1.61 ± 0.05	1.56 ± 0.04
Total signal	35.0	39.8 ±0.8
	±0.7	
Total bkg.	460 ±25	641 ±26

Предложенная переменная
 p_T-balance способна значительно
 подавлять фоновые события,
 сохраняя при этом сигнальные.

< □ > < 同 > < 回 >

Заключение

Полученные результаты:

Произведена оптимизация фазового пространства для инклюзивного процесса ZZ → Ilvv, при этом сигнальная значимость увеличилась с 7.43 ± 0.03 до 44.7 ± 0.4. Предложенные отборы были приняты группой и использовались в дальнейшем анализе.

В ходе изучения электрослабого процесса $ZZjj \rightarrow Il\nu\nu jj$:

- были рассмотрены три способа выбора tag-струй и выбран наиболее эффективный;
- было произведено сравнение переменных, характеризующих вылет Z-бозона относительно tag-струй;
- была предложена переменная *p_T*-balance и продемонстрирована ее эффективность;

・ロト ・日 ・ ・ ヨ ・ ・ ヨ ・ うので

Дальнейшие планы:

- ▶ Продолжение исследования способа наилучшего отбора tag-струй на truth уровне для электрослабого процесса ZZjj → IIννjj;
- Улучшение оптимизации отбора с помощью методов машинного обучения для инклюзивного и электрослабого процесса.

Спасибо за внимание!

4 日 > 4 日 > 4 目 > 4 目 > 目 の 4 0

・ロト ・日下・ ・ ヨト

æ

æ

Variable	No p_T -balance
E _T ^{miss} signif.	>8
<i>М_{ј1}j</i> 2, ГэВ	>700
<i>р</i> _Т (j ₁), ГэВ	>60
р _Т (j ₂), ГэВ	>40
ζ	<0.5
$\Delta \eta +$	<-0.1
$\Delta \eta -$	—
p_T -balance	<0.02
Signal signif.	2.5±0.6
Total signal	9.3 ±0.3
Total bkg.	11 ±7

Таблица: Результаты оптимизации электрослабого рождения ZZ без ограничения минимального числа сигнальных событий и поиском максимальной сигнальной значимости.

(日)

Variable	signal>45	signal>50	signal>55
E ^{miss} signif.	>6	>6	>6
<i>М_{j1j2}</i> , ГэВ	>500	>400	>400
<i>р</i> т(<i>j</i> 1), ГэВ	>80	>90	>80
<i>р</i> _Т (<i>j</i> ₂), ГэВ	>40	>30	—
<i>E_T^{miss}</i> , ГэВ	>90	>90	>90
<i>р</i> _Т (Z), ГэВ	>10	>20	>10
$\Delta Y(Z, j_{max})$	<0.3	<0.3	<0.3
$\Delta Y(Z, j_{min})$	>-0.3	>-0.3	—
p_T -balance	<0.28	<0.3	<0.32
Signal signif.	1.49±0.4	1.42±0.4	1.36±0.3
Total signal	45.0±0.8	50.1±0.8	55.0±0.9
Total bkg.	898±34	1235±55	1614±63

Таблица: Результаты оптимизации электрослабого рождения ZZ с различными ограничениями минимального числа сигнальных событий.

Signal					
EWK ZZ	45.0±0.8	50.1±0.8	55.0±0.9		
	Backgrou	nd			
QCD ZZ	$55.6\ \pm0.9$	84.3 ±1.3	$110.9\ \pm1.6$		
Ζμμ	209 ±22	254 ±22	375 ±33		
Zee	108 ±25	118±50	199 ± 53		
Ζττ	2.1 ±0.4	3.5 ±0.7	4.2 ±0.8		
WZ	146.8 ± 1.1	213.4 ±1.4	257.5 ±1.6		
tt	312 ±4	452 ±4	531 ± 5		
WW	42.9 ±1.2	73.6 ±1.6	90.6 ±1.7		
Wt	20.7 ±1.7	33.6 ±2.3	42.3 ±2.5		
VVV	1.06 ± 0.07	1.58 ±0.8	1.93 ±0.8		
Other	0.85 ± 0.14	1.23 ±0.18	$1.49{\pm}0.19$		
Total bkg.	898±34	1235 ± 55	$1614{\pm}63$		

Таблица: Число сигнальных и фоновых событий для каждого источника сигнала и фона для разных результатов оптимизации электрослабого рождения ZZ с различными ограничениями минимального числа сигнальных событий.