МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ЯДЕРНЫЙ УНИВЕРСИТЕТ «МИФИ» (НИЯУ МИФИ)

ИНСТИТУТ ЯДЕРНОЙ ФИЗИКИ И ТЕХНОЛОГИЙ КАФЕДРА №40 «ФИЗИКА ЭЛЕМЕНТАРНЫХ ЧАСТИЦ»

УДК 531.3, 539.1.05

ОТЧЕТ

О НАУЧНО-ИССЛЕДОВАТЕЛЬСКОЙ РАБОТЕ

Исследование источников фона космогенного происхождения в детекторе Darkside-20k

Студент Д.	С. Голубков
------------	-------------

Научный руководитель, с.н.с. ОФН, НИЦ "Курчатовский институт"

_____ И. Н. Мачулин

Москва 2020

СОДЕРЖАНИЕ

1	Детекторы на основе жидких благородных газов	4
2	Эксперимент Darkside-20k	5
3	Космический фон	7
4	Модель детектора	8
5	Моделирование космогенных мюонов в детекторе	9
6	Моделирование выработки всех β -n изотопов за 10 лет	13
7	Заключение	18
C	писок использованных источников	19

ВВЕДЕНИЕ

Изучение природы Тёмной материи является одной из основных задач современной физики. Астрономические наблюдения последних десятилетий определенно свидетельствуют в пользу того, что, помимо наблюдаемой, во Вселенной имеется значительное (~85%) количество материи, которая не наблюдается иначе, как через гравитационное взаимодействие, и именуется Тёмной материей. Это одна из самых интригующих проблем фундаментального естествознания конца XX столетия, и от результата ее решения в значительной степени будет зависеть научная картина мира в предстоящем будущем.

Присутствие Тёмной материи наблюдается по создаваемым ею гравитационным эффектам. Наиболее убедительными экспериментальными фактами существования Тёмной материи, полученными из космических наблюдений, являются: обнаружение гравитационного линзирования далеких галактик скоплениями галактик, расположенными перед ними и результаты измерения скоростей слоёв гало, для звезд в спиральных галактиках. В зависимости от класса предполагаемых частиц Тёмной материи, можно ожидать, что гравитационное взаимодействие будет для этих частиц не единственным.

Поскольку отсутствует чёткое понимание свойств Тёмной материи, ввиду множества интерпретаций, во всех исследовательских работах, как правило, заранее оговаривается рассматриваемый класс частиц служащий кандидатом на роль Тёмной материи. Самые распространённые кандидаты на роль частиц Тёмной материи: аксионы (масса ~ $10^{-6} - 10^{-2}$ эВ), легчайшие суперсимметричные частицы - нейтралино (10 - 1000 ГэВ), реликтовые чёрные дыры, частицы Калуцы-Клейна.

Наиболее активно рассматриваемой в настоящее время гипотезой является представление большей части небарионной Тёмной материи в виде массивных частиц с массой в диапазоне 1 ГэВ – 1 ТэВ, слабо взаимодействующих с обычной материей, так называемые частицы WIMP (Weakly

2

Interacting Massive Particles, дословно: слабовзаимодействующие массивные частицы) [1].

Частицы WIMP особенно привлекательны в качестве кандидатов на Тёмную материю ввиду ряда очевидных достоинств. Во-первых, появление WIMPoв в теоретической физике частиц мотивировано проблемой нарушения электрослабой симметрии. Во-вторых, согласно стандартным космологическим предположениям, их тепловая реликтовая распространенность естественным образом совпадает с той, которая требуется для Тёмной материи. Слабое взаимодействие с материей может быть достаточным для того, чтобы они могли быть обнаружены в прямых экспериментах [2].

В экспериментах по прямой регистрации WIMP измеряют энергию, выделившуюся в процессе их рассеяния на ядрах мишени. Для регистрации ядра отдачи и измерения его энергии могут быть использованы ионизационные, сцинтилляционные и калориметрические детекторы или их комбинации [2].

1. ДЕТЕКТОРЫ НА ОСНОВЕ ЖИДКИХ БЛАГОРОДНЫХ ГАЗОВ

В настоящее время в мире для поиска частиц Тёмной материи действуют около 15 детекторов на основе жидких благородных газов [3]. Детекторы отличаются друг от друга размерами, формой, конструктивными особенностями и типом мишени (детектирующим веществом). В основном, в качестве мишени используются жидкие инертные газы: жидкий ксенон (LXe), жидкий аргон (LAr) и жидкий неон (LNe). Мишени представляют собой детектирующее вещество – сцинтиллятор. Время высвечивания сцинтилляторов на основе жидких благородных газов ~ 10^{-8} с. Длины волн излучаемого света лежат в области дальнего ультрафиолета. Поэтому световые вспышки, возникающие в жидкости при прохождении заряженной частицы, не могут быть непосредственно зарегистрированы при помощи обычных ФЭУ (имеется ввиду ФЭУ серийного производства). Для решения этой проблемы используют переизлучатели ультрафиолетового света в видимый диапазон, например TPB (ThetraPhenylButadiene). Или, в частности, окно для фотокатода ФЭУ изготавливают из фторида магния (MgF2), который пропускает диапазон длин волн 112 – 830 нм. Основными характеристиками сцинтилляторов являются световой выход, спектр излучения и время высвечивания (См. таблицу 1.1) [4].

Сцинтиллятор	LHe	LAr	LXe
Плотность	0.147 g/cm^3	$1.395 { m g/cm^3}$	$2,942 \text{ g/cm}^3$
Длина волны излучения	80 nm	128 nm	176 nm
Время высвечивания			
(быстрая/медленная	10 ns/13 s	6 ns/1600 ns	4.3 ns/27 ns
компоненты)			
Световой выход	$20000~{\rm ph/MeV}$	40000 ph/MeV	63000 ph/MeV
Коэффициент преломления	1.028	1.45	1.55

Таблица 1.1 — Сцинтилляционные свойства жидких благородных газов

2. ЭКСПЕРИМЕНТ DARKSIDE-20K

Одним из проектов по поиску частиц Тёмной материи является эксперимент Darkside-20k, который является модернизацией уже существующего эксперимента Darkside-50 в недрах горы Gran Sasso в Италии.

Рисунок 2.1 — Конструкция детектора

Детектор представляет собой двухфазную временную проекционную камеру (TPC) с активной массой жидкого аргона 50 тонн. В качестве мишени исполользуется подземный аргон, в котором отсутствует изотоп ³⁹Ar, для значительного снижения радиоактивного фона. Внутренний детектор содержит активный объем LAr, который просматривается массивами кремниевых фотоумножителей (ФЭУ) сверху и снизу. Внутренние поверхности активного объема покрыты напыленной в вакууме тонкой пленкой из тетрафенилбутадиена (TPB), сдвигающего длину волны (WLS), который смещает первичную УФ-сцинтилляцию (S1) 128 нм в свет, видимый ФЭУ.

Для обнаружения ионизации DarkSide использует двухфазную конфигурацию TPC, которая содержит небольшую область газообразного аргона над большей областью жидкого аргона. Равномерное электрическое поле создается «полевой сеткой», состоящей из катодной плоскости, формирующих поле колец и вытяжной сетки. Это однородное поле перемещает ионизационные электроны вверх к поверхности жидкости. Там коллинеарное электрическое поле извлекает электроны в газовую фазу, где они производят вторичные сцинтилляционные фотоны (S2) с помощью процесса, называемого «электролюминесценцией» (EL). Результирующие вторичные фотоны регистрируются кремниевыми ФЭУ как задержанное совпадение относительно первичного сцинтилляционного сигнала.

Подавление фона достигается за счет полного использования богатого информационного содержания объединенных сигналов ионизации и сцинтилляции, доступных от двухфазных ТРС.

LAr TPC позволяет точно локализовать события в трех координатах. Поскольку диффузия во время длительного дрейфа в плотных благородных жидкостях незначительна, время задержки (дрейфа) между сигналами S1 и S2 точно определяет вертикальное положение каждого события с точностью до миллиметра. Распределение света по матрице верхнего фотодетектора дает горизонтальное положение с точностью до сантиметра.

Рисунок 2.2 — Конструкция эксперимента Darkside-20k

TPC расположена внутри криостата из нержавеющей стали, заполненного атмосферным аргоном и окружена нейтронным вето для уменьшения уровня нейтронно-индуцированного фона.

3. КОСМИЧЕСКИЙ ФОН

В италии в регионе Абруцци находится Национальная лаборатория Гран-Сассо на глубине 3800 метров водного эквивалента, где в холле С находится эксперимент Borexino, рядом с которым планируется поместить Darkside-20k.

Представлены результаты расчетов коллаборации Darkside в пакете Монте-Карло Fluka для потоков мюонов и вторичных частиц на внешней поверхности криостата детектора Darkside-20k (см. рис3.1, рис3.2).

Рисунок 3.1 — Расположения мюонов на поверхности цилиндра радиуса 7 и высотой 14 метров в лаборатории Гран-Сассо

Рисунок 3.2 — Спектр энергий мюонов

Плотность потока космических мюонов равна 3.4 $\cdot 10^{-4}$ с⁻¹ \cdot м⁻²

4. МОДЕЛЬ ДЕТЕКТОРА

Нейтроны, образующиеся в результате взаимодействия космических мюонов, играют большую роль в создании фона для подземных детекторов при поиске редких событий. Такие нейтроны могут вносить значительный вклад в фон установки, так как от них особенно трудно защититься и обнаружить. Поскольку фактические данные немногочисленны и плохо документированы, необходимо использовать имитационные исследования для проектирования защиты экранов и прогнозирования уровней фона в установке.

В ходе работы была написана программа в пакете Geant4 по моделированию фона от космических мюонов, пролетающих сквозь детектор. Геометрия модели представлена на рис4.1:

Рисунок 4.1 — Геометрия модели детектора Darkside-20k

5. МОДЕЛИРОВАНИЕ КОСМОГЕННЫХ МЮОНОВ В ДЕТЕКТОРЕ

В результате взаимодействия мюонов с веществом детектора могут нарабатываться радиоактивные изотопы, вносящие вклад в негативный фон. Самыми опасными являются β -n изотопы, при распаде которых происходит эмиссия нейтронов. Эти нейтроны упруго рассеиваются на ядрах мишени детектора, тем самым имитируя частицы WIMP. Поэтому выработка β -n изотопов является наиболее важным объектом исследования.

Пример схемы распада β -n активного изотопа приведена на рис5.1:

Рисунок 5.1 — Схема распада 17 N

Были разыграны космические мюоны с учётом распределения по энергиям, расположениям и направлениям движения в горе Гран-Сассо.

Рисунок 5.2 — Визуализация моделирования космических мю
онов в Гран-Сассо на мишени Darkside-20k

В результате моделирования космических мюонов из данных Borexino получены выходы радиоизотопов β и β +n распадов, которые приведены на рис5.3 и рис5.4:

Количество мюонов в объёме	1836320	1233800	775450	1344990	819510	4846170
Beta изотопы	Outer LAr buffer	Inner LAr buffer	Active LAr	PMMA-1 (1% Gd)	PMMA-2	LAr bath box
41Ar	30058	114390	141259	0	0	53651
40Cl	1668	1191	1378	0	0	10406
39CI	10787	7522	8473	0	0	61612
39Ar	79558	56349	61904	0	0	471213
38CI	10917	7824	8650	0	0	62634
37S	2061	1389	1509	0	0	11979
37Cl	17131	14573	16239	0	0	97593
35S	6884	4929	5413	0	0	39985
34P	1350	992	1023	0	0	7845
33P	2392	1683	1820	0	0	13824
32P	3183	2396	2443	0	0	18390
31Si	962	744	725	0	0	5867
28AI	588	445	405	0	0	3518
10Be	40	40	25	348	100	232
ЗH	5383	3896	4165	1494	556	31877

Рисунок 5.3 — Выход
ы β изотопов при моделировани
и 11785530 мю
онов в детекторе

Количество мюонов в объёме	1836320	1233800	775450	1344990	819510	4846170
Beta-n изотопы	Outer LAr buffer	Inner LAr buffer	Active LAr	PMMA-1 (1% Gd)	PMMA-2	LAr bath box
8He	4	0	3	4	2	13
9Li	10	3	6	18	11	38
11Li	1	0	0	0	0	2
11Be	5	2	2	1	0	23
13B	7	1	2	9	2	20
17N	8	1	4	3	0	41
22F	9	3	7	0	0	45
24F	0	0	0	0	0	0
27Na	5	4	7	0	0	21
31AI	28	9	19	0	0	143
32AI	5	5	1	0	0	34

Рисунок 5.4 — Выход
ы β -п изотопов при моделировани
и 11785530 мю
онов в детекторе

Также были смоделированы все частицы из данных Borexino в горе Гран-Сассо и разыграны в данной модели. Результаты выходов β и β -n активных изотопов от потока частиц, соответствующих 5 годам, приведены на рис5.5 и рис5.6:

Количество частиц в объёме	2426856	1499714	926222	1705834	985668	29755920
Beta изотопы	Outer LAr buffer	Inner LAr buffer	Active LAr	PMMA-1 (1% Gd)	PMMA-2	LAr bath box
41Ar	48857	169898	207460	0	0	90782
40CI	2744	1978	2093	0	0	20165
39CI	16777	12051	12427	0	0	119493
39Ar	92179	64680	69036	0	0	674348
38CI	16591	12050	12607	0	0	116845
37S	3219	2250	2394	0	0	22682
37CI	25961	22446	23866	0	0	180884
35S	10915	8070	8184	0	0	78296
34P	2220	1684	1747	0	0	15993
33P	3873	2899	2934	1	0	28030
32P	5326	3832	3824	23	0	38054
31Si	1689	1222	1155	2	0	11387
28AI	948	740	687	0	0	6866
10Be	65	47	51	423	129	456
ЗH	8739	6584	6542	2464	781	61953

Рисунок 5.5 — Выход
ы β изотопов при моделировании частиц за 5 лет

Количество частиц в объёме	2426856	1499714	926222	1705834	985668	29755920
Beta-n изотопы	Outer LAr buffer	Inner LAr buffer	Active LAr	PMMA-1 (1% Gd)	PMMA-2	LAr bath box
8He	2	1	2	10	1	24
9Li	12	5	14	33	4	93
11Li	0	0	0	0	0	4
11Be	6	5	3	9	0	41
13B	8	3	7	8	2	42
17N	13	5	8	1	0	63
22F	9	11	15	0	0	99
24F	0	1	0	0	0	3
27Na	8	7	5	0	0	48
31AI	44	31	26	0	0	269
32AI	11	6	7	0	0	73

Рисунок 5.6 — Выход
ы β -п изотопов при моделировании частиц за 5 лет

6. МОДЕЛИРОВАНИЕ ВЫРАБОТКИ ВСЕХ β -N ИЗОТОПОВ ЗА 10 ЛЕТ

Далее программа моделирования была дополнена всеми возможными β -n активными изотопами и произведено вычисление выделения имитирующих нейтронов за 10 лет.

Результаты моделирования выработки изотопов и имитирующих WIMP нейтронов представлены в следующих таблицах:

таблицы 6.1, 6.2 - выходы изотопов и нейтронов в определённых объёмах детектора за 10 лет, а также вероятность β +n распада (в таблице 6.2);

таблицы 6.3, 6.4 - выход нейтронов за 10 лет при отсечении с помощью ВЕТО-запрета на 5 и 10 секунд (Rejection 5, 10 sec) во всём объёме и в активной мишени детектора, а также периоды полураспада изотопов (в таблице 6.3).

isotope	Outer LAr	Inner LAr	Active LAr	PMMA-1 (1% Gd)
P39				
P38	24	16	12	
Si37	2	2		
Si36	6	4	7	
Al35		1		
Al34	2	1		
Al33	4	3	2	
Al32	21	11	15	
Al31	86	59	57	
Mg35				
Mg34				
Mg33	1	1	1	
Mg32		1	1	
Mg31	4	2	2	
Mg30	12	4	4	
Na32			1	
Na31	1			
Na30			1	
Na29		1	1	
Na28	2	2		
Na27	15	5	9	
Ne27	1			
Ne26				
F24	1	1	1	
F23	3	4	3	
F22	17	14	20	
022		1	1	
N22				
N20				
N18	4	3		1
N17	10	15	15	2
C18				
C17		1		
C16	1	1		
B15				
B14	4	2	1	15
B13	7	5	7	10
Be14			1	
Be12	2	1	1	8
Li11				
Li9	21	16	26	39
He8	2	2	1	5
Total	253	179	190	80
number of neutrons	31,6615	32,0463	36,2771	23,561

Таблица 6.1 — Выход
 β -п изотопов за 10 лет

isotope	PMMA-2	LAr box	sum	$(\beta - , n)$	neutrons
P39		1	1	26,80%	0,268
P38		153	205	12,50%	25,625
Si37		9	13	17,00%	2,21
Si36		63	80	12,50%	10
Al35		9	10	38,00%	3,8
Al34		12	15	26,00%	3,9
Al33		39	48	8,50%	4,08
Al32		119	166	0,70%	1,162
Al31		499	701	1,60%	11,216
Mg35		1	1	52,00%	0,52
Mg34		2	2	30,00%	0,6
Mg33		4	7	14,00%	0,98
Mg32		6	8	5,50%	0,44
Mg31		12	20	6,20%	1,24
Mg30		47	67	0,06%	0,0402
Na32			1	24,00%	0,24
Na31		1	2	37,30%	0,746
Na30			1	30,00%	0,3
Na29			2	25,90%	0,518
Na28		25	29	0,58%	0,1682
Na27		79	108	0,13%	0,1404
Ne27		3	4	2,00%	0,08
Ne26		2	2	$0,\!13\%$	0,0026
F24		8	11	5,90%	0,649
F23		40	50	14,00%	7
F22		180	231	11,00%	25,41
022		10	12	22,00%	2,64
N22		1	1	34,00%	0,34
N20		1	1	42,90%	0,429
N18	1	34	43	7,00%	3,01
N17	3	102	147	$95,\!00\%$	139,65
C18		1	1	31,50%	0,315
C17		5	6	28,40%	1,704
C16		11	13	$97,\!90\%$	12,727
B15	1	5	6	$93,\!60\%$	5,664
B14	3	26	51	6,04%	3,0804
B13	4	59	92	$0,\!28\%$	0,2576
Be14		2	3	98,00%	2,94
Be12		23	35	0,50%	0,175
Li11		5	5	86,30%	5,01
Li9	15	158	275	$50,\!80\%$	139,7
He8	4	45	59	16,10%	9,499
Total	31	1802	2535		428,4764
number of neutrons	12,3204	292,6101	428,4764		

Таблица 6.2 — Выход
 β -п изотопов за 10 лет

isotope	Half-life $T1/2$	Rejection (5 sec)
P39	282 ms	0,0
P38	640 ms	0,1
Si37	90 ms	0,0
Si36	$450 \mathrm{ms}$	0,0
Al35	37,2 ms	0,0
Al34	$56,3 \mathrm{ms}$	0,0
Al33	$41,7 \mathrm{ms}$	0,0
Al32	$33 \mathrm{ms}$	0,0
Al31	644 ms	0,1
Mg35	$70 \mathrm{ms}$	0,0
Mg34	$20 \mathrm{ms}$	0,0
Mg33	$95 \mathrm{ms}$	0,0
Mg32	86 ms	0,0
Mg31	326 ms	0,0
Mg30	313 ms	0,0
Na32	12,9 ms	0,0
Na31	$17,\!35 \text{ ms}$	0,0
Na30	48,4 ms	0,0
Na29	44,1 ms	0,0
Na28	$30,5 \mathrm{ms}$	0,0
Na27	301 ms	0,0
Ne27	31,5 ms	0,0
Ne26	$197 \mathrm{ms}$	0,0
F24	384 ms	0,0
F23	2,23 s	1,5
F22	4,23 s	11,2
O22	2,25 s	0,6
N22	23 ms	0,0
N20	136 ms	0,0
N18	619,2 ms	0,0
N17	4,173 s	60,9
C18	92 ms	0,0
C17	193 ms	0,0
C16	$747 \mathrm{ms}$	0,1
B15	9,93 ms	0,0
B14	12,5 ms	0,0
B13	$17,33 \mathrm{\ ms}$	0,0
Be14	4,35 ms	0,0
Be12	$21,50 \mathrm{\ ms}$	0,0
Li11	$8,75 \mathrm{\ ms}$	0,0
Li9	$178,3 \mathrm{ms}$	0,0
He8	119,1 ms	0,0
Total neutrons		74,4

Таблица 6.3 — Выход нейтронов за 10 лет при ВЕТО-запрете на 5 секунд

isotope	Rejection (10 sec)	Rejection (10 sec) in Active LAr
P39	0,0	0,0
P38	0,0	0,0
Si37	0,0	0,0
Si36	0,0	0,0
Al35	0,0	0,0
Al34	0,0	0,0
Al33	0,0	0,0
Al32	0,0	0,0
Al31	0,0	0,0
Mg35	0,0	0,0
Mg34	0,0	0,0
Mg33	0,0	0,0
Mg32	0,0	0,0
Mg31	0,0	0,0
Mg30	0,0	0,0
Na32	0,0	0,0
Na31	0,0	0,0
Na30	0,0	0,0
Na29	0,0	0,0
Na28	0,0	0,0
Na27	0,0	0,0
Ne27	0,0	0,0
Ne26	0,0	0,0
F24	0,0	0,0
F23	0,3	0,0
F22	4,9	0,4
O22	0,1	0,0
N22	0,0	0,0
N20	0,0	0,0
N18	0,0	0,0
N17	26,5	2,7
C18	0,0	0,0
C17	0,0	0,0
C16	0,0	0,0
B15	0,0	0,0
B14	0,0	0,0
B13	0,0	0,0
Be14	0,0	0,0
Be12	0,0	0,0
Li11	0,0	0,0
Li9	0,0	0,0
He8	0,0	0,0
Total neutrons	31,9	3,2

Таблица 6.4 — Выход нейтронов во всём объёме и мишени детектора за 10 лет при ВЕТО-запрете на 10 секунд

7. ЗАКЛЮЧЕНИЕ

В ходе работы был смоделирован радиоактивный фон от космических мюонов для эксперимента Darkside-20k. Полученные результаты будут использоваться для анализа фонов детектора. В будущем планируется провести моделирование полного объёма детектора и оптимизацию программы. Проведенные расчеты будут использованы для выработки критериев подавления фона в установке, в частности длительности сигналов вето активной защиты детектора.

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- 1. Akimov D. Experimental methods for detecting corpuscular dark matter (review). Instrumentation and experimental technique. 2001.
- 2. V.A. Ryabov V.A. Tsarev A. T. Search for dark matter particles. Advances in the physical sciences (reviews of current problems). 2008.
- 3. Akimov. D. Overview of WIMP Search Experiments // INRseminar2011. —.
- 4. A Global Analysis of Light and Charge Yields in Liquid Xenon / B. Lenardo [и др.] // IEEE Trans. Nucl. Sci. — 2015. — т. 62, № 6. — с. 3387—3396. arXiv: 1412.4417 [astro-ph.IM].