МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ЯДЕРНЫЙ УНИВЕРСИТЕТ «МИФИ»

(НИЯУ «МИФИ»)

УДК 539.123, 519.688

ОТЧЕТ

О НАУЧНО-ИССЛЕДОВАТЕЛЬСКОЙ РАБОТЕ

Разработка программного обеспечения для расчёта спектров реакторных антинейтрино

Руководитель НИР,	О.А. Титов
к.фм.н.	

Студент

_____Д.В. Попов

Москва 2021

ОГЛАВЛЕНИЕ

B	веде	ние		3
1	Pea	кторн	ые эксперименты	6
2	Me	год ко	нверсии	10
	2.1	Постр	оение математической модели и алгоритма	11
		2.1.1	Функция Ферми	14
		2.1.2	Поправки на конечный размер ядра	18
		2.1.3	Экранирование	21
		2.1.4	Радиационные поправки	23
		2.1.5	Слабый магнетизм	24
		2.1.6	Атомный обмен	26
		2.1.7	Атомное несоответствие	27
		2.1.8	Выводы	29
	2.2	Koppe	еляционная функция пересчета	31
3	Pea	лизац	ия, анализ полученных результатов	32
4	Зак	лючен	ие	37
C	писо	к испо	ользованных источников	38
П	рилс	жение	е А. Вспомогательные данные	42
П	рилс	жение	е В. Кумулятивные спектры реакторных	
			антинейтрино для $^{235}\mathrm{U}$ и $^{238}\mathrm{U}$	43

ВВЕДЕНИЕ

Впервые возможность использовать ядерные реакторы в качестве источников антинейтрино обсуждал Б.М. Понтекорво [1]. Принцип работы реактора основан на управляемой, самоподдерживающейся цепной реакции деления тяжелых ядер, которая сопровождается выделением энергии. При одном таком делении образуется 2 (или более) нестабильных осколка с избыточным числом нейтронов, которые претерпевают серию β -распадов для возвращения в долину стабильности. На один акт деления приходится в среднем 6 β -распадов, что соответствует рождению 6 электронных антинейтрино с энергиями до 8 МэВ. В реакторе с тепловой мощностью 1 ГВт будет рождаться порядка 10²⁰ электронных антинейтрино в секунду [1,2]. Таким образом, в связи с тем, что реактор является интенсивным и чистым источником антинейтрино, знание спектров последних представляет большой интерес для фундаментальной науки (осцилляционные реакторные эксперименты [2–6]), а зависимость этих спектров от мощности реактора и его топливного состава открывает возможность прикладного применения спектроскопии реакторных антинейтрино (нейтринный метод мониторинга ядерных реакторов [7]).

На данный момент существует два основных подхода для расчетов кумулятивных спектров реакторных антинейтрино [3, 8]. Первый из них, метод прямого суммирования (*ab initio*), основан на использовании доступной информации о продуктах деления тяжелых изотопов и отдельных каналах бета-распада, которая получается либо из целенаправленных экспериментов, либо на основе численных вычислений, хранящихся в базах данных. Несмотря на хорошо проработанную теорию, использование прямого суммирования подразумевает учёт вклада тысяч каналов бета-распада для каждого делящегося изотопа, что приводит к большим неопределенностям.

Второй метод, называемый методом конверсии [3,8,9], состоит из трех этапов:

— измерение в лаборатории бета-спектра от конкретного делящегося изо-

топа;

 — описание полученного бета-спектра при помощи набора синтетических каналов бета-распада, параметры которых определяются методом подгонки;

— использование теоретической модели для получения спектра антинейтрино.

В связи с систематическими погрешностями процедуры конверсии, данным методом можно получить спектр с более грубыми интервалами по энергии, чем измеренный бета-спектр, однако он лишен неопределенностей *ab initio*.

Кумулятивные бета-спектры от основных изотопов ²³⁵U, ²³⁹Pu и ²⁴¹Pu были измерены группой института Лауэ–Ланжевена (ILL) [10–12] в 80-ых годах, этой же группой была проведена конверсия полученных данных в спектры антинейтрино. Позднее, в 2011, в работах [8,9] (модель Huber–Mueller) было проведено более аккуратное моделирование последних. Спектры антинейтрино ρ_{ν}^{235} , ρ_{ν}^{239} и ρ_{ν}^{241} в модели Huber–Mueller получены конверсией данных ILL, спектр ρ_{ν}^{238} рассчитан методом *ab initio*. Оказалось, что измеренный на стандартном удалении 15 – 100 м от реактора выход реакции обратного бета-распада (основной реакции, по которой регистрируются антинейтрино) в среднем на 5% меньше, чем ожидаемый по данным работ [8,9]. Данную проблему в литературе принято называть реакторной антинейтриной аномалией ("Reactor Antineutrino Anomaly", RAA [13]), и её обычно связывают с двумя причинами:

— существованием стерильных нейтрино или другой новой физики;

— неточностью модельных спектров антинейтрино 235 U и 239 Pu, вызванных либо ошибками в измерениях спектров β -частиц группы ILL, либо ошибками самой процедуры конверсии.

В результате эксперимента НИЦ КИ [14, 15] было обнаружено, что нормировка спектра β -частиц ²³⁵U группы ILL, вероятно, ошибочно завышена примерно на 5%, что решает проблему RAA, но требует пересчета спектров реакторных антинейтрино. Целью данной работы является разработка программного обеспечения для расчета спектров реакторных антинейтрино методом конверсии, проверка устойчивости процедуры к изменению входных данных и получение самих спектров.

4

В первой главе данной работы обсуждаются теоретические и экспериментальные аспекты реакторных нейтринных экспериментов. Вторая глава посвящена реализации метода конверсии — производится анализ вкладов различных поправок к форме одиночных бета-спектров и спектров нейтрино, описывается математическая модель и алгоритм предложенной процедуры. В третьей главе представляются полученные результаты — кумулятивные спектры от основных изотопов и взвешенные сечения обратного бета-распада, проводится сравнение последних с экспериментальными данными.

1. РЕАКТОРНЫЕ ЭКСПЕРИМЕНТЫ

Полный реакторный спектр представляется как [3,7]

$$S_{\nu}(E_{\nu}) = \sum_{i} f_{i} \cdot S_{i}(E_{\nu}),$$
 (1.1)

где f_i — число делений *i*-ого изотопа, а $S_i(E_{\nu})$ — соответствующий спектр антинейтрино *i*—ого изотопа, нормированный на одно деление.

Тепловая мощность реактора W_{th} связана с параметрами f_i [3]:

$$W_{th} = \sum_{i} f_i \cdot (E_i - E_\nu + E_n), \qquad (1.2)$$

где E_i — энергия, выделяющаяся при делении *i*-ого изотопа, E_{ν} — энергия антинейтрино, E_n — энергия, обусловленная захватами нейтронов в материалах реактора. Величину ($E_i - E_{\nu} + E_n$), которую мы будем обозначать ε_i , обычно называют эффективной тепловой энергией. Под *i*-тыми изотопами будем понимать ²³⁵ U, ²³⁸ U, ²³⁹ Pu и ²⁴¹ Pu, так как распады именно этих элементов вносят основной вклад (более 99%) в тепловую мощность реактора. Величины ε_i для них рассчитаны с хорошей точностью [3].

Спектр антинейтрино $S_i(E_{\nu})$ представляется суммой по всем делениям *i*-ого изотопа [8]:

$$S_i(E_{\nu}) = \sum_{f=1}^{N_f} A_f(t) \,\rho_f(E_{\nu}) \,, \qquad (1.3)$$

где $A_f(t)$ — активность f-ого продукта деления в момент времени t, нормированная на распад i-ого изотопа. $\rho_f(E_{\nu})$ в свою очередь является суммой по всем модам (ветвям), связывающим основное состояние родительского ядра с различными возбужденными состояниями дочерних ядер [8]:

$$\rho_f(E_{\nu}) = \sum_{b=1}^{N_b} BR_f^b \; \rho_f^b(Z_f, A_f, E_{0\,f}^b, E_{\nu}) \,, \tag{1.4}$$

где $\operatorname{BR}_{f}^{b}$ — коэффициент ветвления (branching) — доля f-ых ядер, распадающихся по данной b-ой ветви относительно всех f-ых ядер, $E_{0\,f}^{b}$ — энергия конечной точки b-ой ветви f-ого продукта деления ($E_{0\,f}^{b} = E_{\nu} + E_{\beta}$), Z_{f} и A_{f} — заряд и атомный номер f-ого ядра соответственно.

Для электронов ρ_f^b имеет вид [8]

$$\rho_{f}^{b} = k_{f}^{b} \cdot p_{\beta} E_{\beta} (E_{0\,f}^{b} - E_{\beta})^{2} \cdot F(Z_{f}, E_{\beta}) \cdot C_{f}^{b}(E_{\beta}) \cdot \delta_{f}^{b}(Z_{f}, A_{f}, E_{\beta}) .$$
(1.5)

Здесь k_f^b — нормировочный множитель, $p_\beta E_\beta (E_{0f}^b - E_\beta)^2$ представляет фактор фазового объема (т.е. кинематику реакции), $F(Z_f, E_\beta)$ — функция Ферми, описывающая кулоновское взаимодействие β -электрона с дочерним ядром. Множитель $C_f^b(E_\beta)$ является поправкой к фактору фазового объема и включает в себе ядерный матричный элемент, зависит от запрещенности перехода (в случае разрешенных переходов $C_f^b(E_\beta) = 1$). Наконец, $\delta_f^b(Z_f, A_f, E_\beta)$ представляет собой различные поправки, связанные с неточечностью ядра, экранированием, слабым магнетизмом и т.п. Далее перечисленные факторы будут обсуждаться более подробно.

Для получения одиночного спектра антинейтрино достаточно сделать замену $E_{\beta} \to W_{0f}^b - E_{\beta}$ и изменить одну из поправок в выражении (1.5).

Зная спектры реакторных антинейтрино, можно рассчитать их потоки, которые будут регистрироваться в детекторе. Связь реакторного антинейтринного спектра $S_{\nu}(E_{\nu})$ (который, напомним, нормирован на один распад) с потоком антинейтрино $\Phi_{\nu}(E_{\nu})$ с энергией E_{ν} на расстоянии L от реактора выражается формулой

$$\Phi_{\nu}(E_{\nu}) = \frac{W_{th}}{\overline{\varepsilon}} \frac{S_{\nu}(E_{\nu})}{4\pi L^2},$$
(1.6)

где W_{th} — тепловая мощность реактора, о которой речь шла выше, $\overline{\varepsilon}$ — средняя энергия, выделяемая при одном распаде тяжелого элемента ($\overline{\varepsilon} \approx 200 \text{ M}$ эB).

Для регистрации антинейтрино в основном используется реакция обратного бета-распада (ОБР):

$$\widetilde{\nu_e} + p \to n + e^+, \tag{1.7}$$

имеющая порог $E_{\nu} \approx m_n - m_p + m_e \approx 1.8$ МэВ, где m_n, m_p и m_e — массы нейтрона, протона и электрона соответственно. С её помощью в 1956 году Ф.Райнесом и К.Коуэном в эксперименте на реакторе в Саванна-Ривер и было сделано экспериментальное открытие антинейтрино [16].

Существует несколько моделей сечения ОБР разной степени точности. "Наивная" модель предполагает, что протон и нейтрон являются бесконечно тяжелыми (по сравнению с массами позитрона и энергией реакторных антинейтрино), а энергии e^+ и $\tilde{\nu}_e$ в приближении изотропии связаны простым соотношением:

$$E_e = E_{\nu} - (m_n - m_p).$$
 (1.8)

Само "наивное" сечение имеет вид [17]:

$$\sigma_{\text{Naive}} = \frac{1}{\pi} (G_{\text{V}}^2 + 3 G_{\text{A}}^2) E_e p_e , \qquad (1.9)$$

где E_e, p_e — энергия и модуль импульса позитрона, а слабые константы G_V и G_A выражаются через постоянную Ферми G_F , элемент матрицы смешивания кварков Кабиббо–Кобаяши–Маскава V_{ud} и формфакторы свободного нуклона g_v, g_a как $G_V = G_F V_{ud} g_v$ и $G_A = G_F V_{ud} g_a$ соответственно.

Входящая в 1.9 комбинация слабых констант может быть отнормирована на β -распад свободного нейтрона [17]:

$$(G_{\rm V}^2 + 3 G_{\rm A}^2) = \frac{2\pi^3 \ln 2}{m_e^5 f t},$$
(1.10)

где f = 1.7146 [17] — безразмерный фактор фазового пространства, t — период полураспада нейтрона.

В упомянутой работе [17] обсуждаются различные поправки к сечению (отдача ядра, слабый магнетизм, радиационные поправки и т.д.), а в [18] представлены модели сечения с учетом анизотропии реакции.

В работе [19] представлено удобное для расчетов выражение

$$\sigma_{\rm Str} = p_e \, E_e \, E_v^{-0.07056 + 0.02018 \cdot \ln(E_v) - 0.001953 \cdot \ln^3(E_v)} \cdot 10^{-43} \, \rm cm^2 \,, \qquad (1.11)$$

совпадающее с точными расчетами [17,18] в пределах долей процента [19].

Как видно из уравнений выше, сечение реакции ОБР крайне мало (порядка 10⁻⁴³ см²) при энергиях реакторных антинейтрино, поэтому для эффективной регистрации необходимы достаточно большие объемы рабочего вещества детектора, в качестве которого обычно используют жидкий сцинтиллятор с высоким содержанием протонов. После взаимодействия антинейтрино с протоном рожденный позитрон забирает большую часть энергии реакции, которую затем достаточно быстро (за несколько наносекунд) теряет в рабочем веществе за счет ионизационных и радиационных потерь. В конечном итоге он аннигилирует с электроном в два γ -кванта с энергиями $m_e = 0.511$ МэВ. Рожденный в ОБР нейтрон тем временем соударяется с ядрами среды и теряет свою кинетическую энергию. С уменьшением скорости нейтрона сечение его взаимодействия со средой растет, поэтому замедляется он достаточно быстро, а затем начинает диффундировать до момента захвата протоном с последующим испусканием γ -кванта с энергией 2.2 МэВ. Происходит это примерно через 200 мкс после реакции ОБР. В результате описанного процесса на выходе детектора появляются два сигнала — быстрый (от аннигиляции) и запаздывающий (от захвата нейтрона), при помощи которых можно получить энергию провзаимодействовавшего антинейтрино [4-6].

Помимо спектров позитронов ОБР, важной экспериментальной наблюдаемой является взвешенное сечение

$$\sigma^{i} = \int_{1.8}^{8} \rho_{\nu}^{i}(E_{\nu}) \,\sigma(E_{\nu}) \mathrm{d}E_{\nu} \,. \tag{1.12}$$

Коллаборациями Daya Bay [4,6] и RENO [5] в ходе многолетнего набора статистики были впервые получены сечения σ^{235} и σ^{239} . Кроме того, Daya Bay получила спектры позитронов в потоках антинейтрино ²³⁵U и ²³⁹Pu [6], что создает реальные предпосылки точного определения спектров антинейтрино ρ_{ν}^{235} и ρ_{ν}^{239} .

2. МЕТОД КОНВЕРСИИ

По результатам эксперимента ILL [10–12] были получены кумулятивные бета-спектры от трех основных изотопов. Для преобразования бетаспектров в спектры антинейтрино была предложена следующая процедура: экспериментальный спектр *i*-ого изотопа был аппроксимирован функцией

$$\rho^{(i)}(E_{\beta}) = \sum_{n=1}^{N} a_n^{(i)} \ \rho_{\beta}(E_{\beta}, E_{0\,n}^{(i)}) \ , \qquad (2.1)$$

представляющей из себя сумму из N (для каждого *i*-ого изотопа число N выбиралось индивидуально) виртуальных одиночных бета-ветвей. По итогам аппроксимации были получены значения нормировочных коэффициентов (амплитуд) и конечных энергий $\{a_n^{(i)}, E_{0n}^{(i)}\}$ для каждого изотопа, после чего по известной связи $\rho_\beta(E_\beta)$ и $\rho_\nu(E_\nu)$ были рассчитаны соответствующие кумулятивные спектры антинейтрино.

Данная процедура расчета антинейтринных спектров в литературе получила названия метода конверсии и активно обсуждалась авторами достаточно длительное время. Так, в работе [20] был проведен анализ процедуры на Монте–Карло данных и получены ограничения, гарантирующие погрешность преобразования порядка 1% в интервале энергий от 1 до 8 МэВ. В работе [8] был реализован расчет спектров антинейтрино с использованием данных [10,11] на основе и метода *ab initio*, и метода конверсии.

Наконец, в работе [9] предложена модель, реализующая более точную конверсию с использованием большого числа различных поправок к одиночным спектрам, которые учитываются в каждой ветви, подробно описан и рассчитан вклад систематических погрешностей самой процедуры. По этим причинам за основу нашей модели будет положена работа [9].

2.1. ПОСТРОЕНИЕ МАТЕМАТИЧЕСКОЙ МОДЕЛИ И АЛГОРИТМА

Пусть имеется экспериментально измеренный кумулятивный бетаспектр $\rho_{\beta} = \left\{\rho_{\beta}^{(i)}\right\}_{i=1}^{N}$, содержащий N точек. Разделим его на равные части по s точек так, чтобы энергетическая ширина каждого среза составляла порядка 250 кэВ (в упомянутых выше работах [9, 20] показано, что этот подход является оптимальным). Получим набор срезов $S_j = \left\{\rho_{\beta}^{(j-s)}, \rho_{\beta}^{(j-s-1)}, ..., \rho_{\beta}^{(j)}\right\}$, где индекс j нумерует срез и пробегает значения от s+1 до N. Начиная с последнего среза S_N мы начинаем аппроксимацию — сеточная функция $\{T^{(i)}, \rho_{\beta}^{(i)}\}_{i=N-s}^{N}$ описывается функцией $a \rho_{\beta}(T, Q)$ с такими параметрами a и Q, что значение функционала

$$R = R(a, Q) = \sum_{i=N-s}^{N} \left(\rho_{\beta}^{(i)} - a \,\rho_{\beta}(T^{(i)}, Q)\right)^2 \tag{2.2}$$

минимально. Из этого условия находятся значения $\{a_N, Q_N\}$, соответствующие срезу S_N , т.е.

$$\{a_N, Q_N\} = \operatorname{argmin} \left[R(a, Q)\right] . \tag{2.3}$$

После этого строится функция $a_N \rho_\beta(T_\beta, Q_N)$ и вычитается из исходного кумулятивного бета-спектра:

$$\rho_{\beta}^{(i)} == \rho_{\beta}^{(i)} - a_N \,\rho_{\beta}(T_{\beta}^{(i)}, Q_N) \,, \quad i = 1, 2, ..., N \,, \tag{2.4}$$

где "==" означает операцию присваивания.

Эта процедура повторяется для всех последующих срезов от N-2 до s, в результате чего получается набор значений $\{a_i, Q_i\}_{i=1}^{N/s}$, с помощью которого строится кумулятивный спектр антинейтрино, соответствующий исходному ρ_{β} :

$$\rho_{\nu}(E_{\nu}) = \sum_{i=1}^{N/s} a_i \, \rho_{\nu}(E_{\nu}, Q_i) \tag{2.5}$$

Полученный спектр (2.5) является суммой N/s ветвей, в то время как истинный спектр содержит их порядка тысячи. В работе [20] с использованием Монте–Карло данных показано, к каким расхождениям приводит этот факт и чем он вызван. В той же работе предлагается метод, позволяющий свести возможные расхождения полученного спектра антинейтрино и истинного к минимуму. Он заключается в усреднении спектра (2.5):

1) Вводится более грубая, равномерная энергетическая сетка $\{\varepsilon_i\}_{i=1}^M$, шаг которой h = 250 кэВ;

2) Значение $\rho_{\nu}(\varepsilon_i)$ рассчитывается по формуле:

$$\rho_{\nu}(\varepsilon_{i}) = \frac{\int\limits_{\varepsilon_{i}-h/2}^{\varepsilon_{i}+h/2} \rho_{\nu}(E_{\nu}) \,\mathrm{d}E_{\nu}}{h}$$
(2.6)

Полученный набор значений $\{\rho_{\nu}(\varepsilon_i)\}_{i=1}^{M}$ является конечным результатом процедуры конверсии. В работе [21] было предложено аппроксимировать $\{\rho_{\nu}(\varepsilon_i)\}_{i=1}^{M}$ функцией

$$y(E) = \exp\left(\sum_{j=1}^{6} a_j E^{j-1}\right)$$
 (2.7)

Бета-спектр и спектр антинейтрино зависят от трёх основных параметров — нормировочного коэффициента a, энергии конечной точки E_0 и заряда дочернего ядра Z (зависимостью от массового числа A мы пренебрегаем, она не вносит никакого значимого вклада [9]). Первые два из них, как показано выше, определяются в процессе аппроксимации. Технически, заряд Z тоже можно варьировать, однако это увеличит число степеней свободы в предложенной процедуре, делая её ещё более "нефизичной". Другой вариант — взять некоторое фиксированное значение (к примеру, для ²³⁵U положить Z = 92/2 + 1 = 47).

Данные варианты обсуждались в работе [20], в ней же проанализирован оптимальный вариант, который был использован при расчете спектров антинейтрино в эксперименте ILL [10, 11]. Предлагается ввести некоторый эффективный заряд $\langle Z \rangle$, который определяется с использованием ядерных баз данных как [20]:

$$\langle Z \rangle(E_0) = \frac{\sum_{Z,A} Y(Z,A) \sum_f BR_f(E_{0,f}) Z}{\sum_{Z,A} Y(Z,A) \sum_f BR_f(E_{0,f})}$$
(2.8)

где Y(Z, A) — кумулятивный выход деления. Традиционно эту зависимость принято представлять в виде полинома второй степени [9–11, 20]:

$$\langle Z \rangle(E_0) = Z(E_0) = a_0 + a_1 E_0 + a_2 E_0^2$$
 (2.9)

Или же, в терминах энергии реакции Q:

$$Z(Q) = c_0 + c_1 Q + c_2 Q^2$$
(2.10)

Мы будем использовать наборы коэффициентов c_i для аппроксимации Z(Q), полученные в работе [9] для ²³⁵U, ²³⁹Pu и ²⁴¹Pu и представленные в таблице 1. Отметим, что в определении [9] Z является зарядом родительского ядра.

Таблица 1. Коэффициенты параметризации Z(Q) для выражения (2.10)

Изотоп	c_0	c_1	C_2
235 U	$48.992^{+0}_{-0.164}$	$-0.399^{+0.161}_{-0}$	$-0.084^{+0}_{-0.044}$
²³⁹ Pu	$49.650^{+0}_{-0.214}$	$-0.447^{+0.036}_{-0}$	$-0.089^{+0}_{-0.016}$
²⁴¹ Pu	$49.906^{+0}_{-0.178}$	$-0.510^{+0.160}_{-0}$	$-0.044^{+0}_{-0.052}$

В качестве модельного одиночного спектра мы будем использовать следующее выражение [22]:

$$\rho_{\beta}(T) = k p (T + m_e) (Q - T)^2 \{ F(Z, T) L_0(Z, T) C(Z, T, Q) S(Z, T) \cdot G_{\beta}(T, Q) (1 + \delta_{WM}) \} X(Z, T) r(Z, T, Q) , \qquad (2.11)$$

где поправки к бета-спектру, выделенные в фигурных скобках, соответствуют модели Huber [9]. Соответствующий спектр антинейтрино $\rho_{\nu}(E_{\nu})$ получается заменой $T \to Q - T$ и $G_{\beta} \to H_{\nu}$, где H_{ν} — радиационная поправка для спектра антинейтрино. Мы используем разрешенную форму перехода, полагая фактор формы равным 1. В работе [20] показано, что данного приближения оказывается достаточно для точного описания формы кумулятивного спектра антинейтрино. Выбор перечисленных поправок основан, во-первых, на модели Huber [9], и, во-вторых, на их анализе в обзорной статье [22]. Далее мы обсудим каждую из предложенных поправок, её происхождение и вклад в форму одиночного спектра.

2.1.1. ФУНКЦИЯ ФЕРМИ

Функция Ферми F(Z, E) описывает кулоновское взаимодействие точечного дочернего ядра с β -электроном. Формально она определяется как [23]

$$F(Z, E) = \frac{|\Psi_{\text{Coulomb}}|^2}{|\Psi_{\text{free}}|^2}, \qquad (2.12)$$

где Ψ_{free} — свободное решение уравнения Дирака, Ψ_{Coulomb} — решение уравнения Дирака с кулоновским потенциалом. Явный вид функции Ферми описывается следующим уравнением [23]:

$$F(Z, E) = 2(\gamma + 1)(2p_{\beta}R)^{(2\gamma - 1)}e^{(\pi\alpha Z E_{\beta}/p_{\beta})} \cdot \frac{|\Gamma(\gamma + i\alpha Z E_{\beta}/p_{\beta})|^{2}}{|\Gamma(2\gamma + 1)|^{2}}, \quad (2.13)$$

где $p_{\beta} = \sqrt{E_{\beta}^2 - m_{\beta}^2}$, — модуль 3-импульса электрона, $\gamma = \sqrt{1 - (\alpha Z)^2}$, α — постоянная тонкой структуры, $\Gamma(z)$ — гамма-функция комплексного аргумента, R = R(A) — радиус ядра, для вычисления которого используем формулу Элтона [24]:

$$R(A) = 1.121A^{1/3} + 2.426A^{-1/3} - 6.614/A \text{ фм.}$$
(2.14)

На рисунке 2.1 представлен график функции Ферми (2.13) для Z = 46.

Рисунок 2.1 — Функция Ферми как функция кинетической энергии электрона

На следующих рисунках представлены нормированные спектры электронов и антинейтрино, иллюстрирующие вклад функции Ферми.

Рисунок 2.2 — Спектр электронов бета-распада в зависимости от кинетической энергии электрона $T_{\beta}, Z = 46, Q = 3$ МэВ.

Рисунок 2.3 — Спектр антинейтрино бета-распада в зависимости от энергии антинейтрино E_{ν} , Z = 46, Q = 3 МэВ.

В случае метода конверсии важную роль играет не нормировка спектра (она находится путем подгонки), а его форма. По этой причине поступим следующим образом: пусть Δ — какая-либо поправка к одиночному бета-спектру (или спектру антинейтрино). Определим вклад поправки Δ в форму бета-спектра как

$$\widetilde{\Delta} = \frac{\widetilde{k} \, p_{\beta} \, E_{\beta} (E_0 - E_{\beta})^2 \cdot \Delta}{k \, p_{\beta} \, E_{\beta} (E_0 - E_{\beta})^2} = \frac{\widetilde{k}}{k} \cdot \Delta \,, \qquad (2.15)$$

где \tilde{k} — нормировка ρ_{β} с учетом поправки Δ , а k — нормировка ρ_{β} без учета поправки. Со спектрами антинейтрино поступим аналогично. Заметим, что даже если Δ не зависит от энергии реакции Q, то $\tilde{\Delta}$ в свою очередь уже является функцией Q (эта зависимость неявно заложена в нормировочных коэффициентах \tilde{k} и k). В дальнейшем мы, обсуждая вклад какой-либо поправки в форму спектра, по умолчанию будем подразумевать именно нормированную поправку, согласно выражению (2.15).

Рассмотрим $\widetilde{F}(Z, E)$ — вклад в форму одиночного спектра от функции Ферми для Q = 3 МэВ и Q = 6 МэВ:

Рисунок 2.4 — Вклад функции Ферми в форму одиночного бета-спектра, Z=46.

Рисунок 2.5 — Вклад функции Ферми в форму одиночного спектра антинейтрино, Z = 46.

2.1.2. ПОПРАВКИ НА КОНЕЧНЫЙ РАЗМЕР ЯДРА

При рассмотрении вместо точечного ядра ядра конечного размера, решить уравнение Дирака и получить выражение для уточненной функции Ферми F(Z, E) аналитически не представляется возможным. По этой причине в литературе используют различные приближения, связанные с распределениями электрического заряда $\rho_{\rm Cl}$ в ядре. Так, например, ядро можно представить в виде равномерно заряженного шара, радиус которого R подгоняется таким образом, чтобы получить правильное значение $\langle r^2 \rangle^{1/2}$ дочернего ядра [22, 26].

Численное решение уравнения Дирака в такой модели для стабильных ядер с $R = r_0 A^{1/3}$ было получено [25], а затем расширено [26] для всех изотопов. Для перехода от точечного ядра к ядру конечного размера достаточно умножить функцию Ферми $F_0(Z, E)$ на выражение $L_0(Z, E)$, которое в модели [26] имеет вид:

$$L_0^{\text{Wil.}}(Z, E) = 1 + \frac{13(\alpha Z)^2}{60} - ER\alpha Z \frac{(41 - 26\gamma)}{15(2\gamma - 1)} - \alpha ZR\gamma \frac{17 - 2\gamma}{30E(2 - 1)} + a_{-1}\frac{R}{E} + \sum_{n=0}^5 a_n (ER)^n + 0.41(R - 0.0164)(\alpha Z)^{4.5}, (2.16)$$

$$a_n = \sum_{j=1}^6 b_{j,n} \; (\alpha Z)^j$$

где $\gamma = \sqrt{1 - (\alpha Z)^2}$, значения коэффициентов $b_{j,n}$ представлены в таблице A1.

Рисунок 2.6 иллюстрирует вклад поправки конечного размера $L_0^{\text{Wil.}}$ в форму спектров.

Рисунок 2.6 — Вклад поправки конечного размера $L_0^{\text{Wil.}}$ в форму спектров, Z = 46, Q = 6 МэВ.

Из рисунка 2.6 видно, что изменение формы достигает порядка 2-4% при Q = 6 МэВ (при $Q \approx 1-2$ МэВ вклад будет порядка 1-2%).

Помимо представленной выше модели, существует несколько других подходов. Так, в работе [3] рассматриваются более простые поправки вида:

$$L_0^{\text{Vog.}}(Z, E) = 1 - \frac{10}{9} Z \alpha RE$$
, (2.17)

$$L_0^{\text{Hayes}}(Z, E) = 1 - \frac{8}{5} Z \alpha R E \left(1 + \frac{9}{28} \frac{m_e^2}{E^2} \right) .$$
 (2.18)

Заметим, что выражения (2.16 - 2.18) представляются разложениями по малым величинам (αZ) ≈ 0.34 (при $Z \approx 46$) и (ER) ≈ 0.24 (при $E \approx 8$ МэВ и $R \approx 6$ фм), причем (2.17) и (2.18) даны до первого порядка по (αZER). Исходя из этого, выражение (2.16) представляется более точным, поэтому в нашей модели за поправку конечного размера L_0 мы примем модель [26], т.е. $L_0 = L_0^{\text{Wil.}}$.

Описанная выше функция L_0 связана с конечным размером дочернего ядра при рассмотрении электромагнитного взаимодействия и является дополнением к функции Ферми. Помимо неё существует поправка конечного размера родительского ядра, связанная уже с неточечностью слабого взаимодействия (а именно — с конечными длинами волн лептонов и распределением нуклонов внутри ядра) [26]. Её явный вид зависит от разрешенности и типа перехода. В случае разрешенных переходов гамовтеллеровского типа она описывается следующим уравнением [9,22,26]:

$$C(Z, E, E_0) = 1 + C_0 + C_1 \cdot E + C_2 \cdot E^2, \qquad (2.19)$$

где

$$C_{0} = -\frac{233}{630}(\alpha Z)^{2} - \frac{(E_{0}R)^{2}}{5} + \frac{2}{35}E_{0}R\alpha Z,$$

$$C_{1} = -\frac{21}{35}R\alpha Z + \frac{4}{9}E_{0}R^{2},$$

$$C_{2} = -\frac{4}{9}R^{2}$$

На рисунке 2.7 показан вклад поправки $C(Z, E, E_0)$ в форму одиночных спектров, а на рисунке 2.8 — результирующий вклад обоих поправок конечного размера.

Рисунок 2.7 — Вклад поправки конечного размера $C(Z, E, E_0), Z = 46, Q = 6$ МэВ.

Рисунок 2.8 — Итоговый вклад поправок конечного размера, $Z=46,\,Q=6$ МэВ.

Из рисунков видно, что вклад $C(Z, E, E_0)$ меняет форму на $\approx 1.5 - 2.5\%$. Итоговый же вклад эффекта конечного размера может достигать до 6%.

2.1.3. ЭКРАНИРОВАНИЕ

Поправка на экранирование S(Z, E) учитывает экранирование электрического заряда ядра электронами с оболочек атома, что эффективно уменьшает заряд, с которым взаимодействует β -электрон. Наиболее используемая в литературе модель S(Z, E) посчитана в работе [27]:

$$S(Z, E) = \begin{cases} \frac{\bar{E}}{\bar{E}} \left(\frac{\bar{p}}{p}\right)^{(2\gamma-1)} e^{\pi(\bar{y}-y)} \frac{|\Gamma(\gamma+\mathrm{i}\bar{y})|^2}{|\Gamma(\gamma+\mathrm{i}y)|^2}, & \text{если } \bar{E} > m_e \\ 1, & \text{если } \bar{E} < m_e \end{cases}$$
(2.20)

где

$$\bar{E} = E - V_0, \ \bar{p} = \sqrt{\bar{E}^2 - m_e^2}, \ y = \frac{\alpha Z E}{p}, \ y = \frac{\alpha Z \bar{E}}{\bar{p}},$$

*V*₀ — потенциал экранирования:

$$V_0 = \alpha^2 (Z - 1)^{4/3} N(Z - 1), \qquad (2.21)$$

N(Z) — линейная интерполяция значений, представленных в таблице A2.

На рисунке 2.9 представлен вклад в форму одиночных спектров от поправки экранирования.

Рисунок 2.9 — Вклад поправки на экранирование в форму одиночного спектра, Z = 46, Q = 6 МэВ.

Как видно из рисунка 2.9, изменение формы спектра за счет экранирования может достигать до 2.5% при $Q \approx 6$ МэВ (при $Q \approx 2$ МэВ получим изменение формы на 1%, а при $Q \approx 8$ МэВ форма спектра изменится примерно на 2%).

В литературе встречаются и другие выражения для поправки на экранирования. Основные из них представлены в обзорной работе [22]; в ней же показано, что в среднем эти выражения отличаются друг от друга на десятые доли процента. По этой причине использовать выражение (2.20) в наших целях представляется разумным.

2.1.4. РАДИАЦИОННЫЕ ПОПРАВКИ

Радиационные поправки учитывают испускание виртуальных и реальных фотонов при взаимодействии заряженных частиц, участвующих в реакции бета-распада.

Поправки первого порядка по α были вычислены в работах [28,30] и имеют следующий вид:

$$G_{\beta}(E_{\beta}, E_{0}) = 1 + \alpha / (2\pi) \cdot g_{\beta}(E_{\beta}, E_{0}),$$

$$H_{\nu}(\hat{E}, E_{0}) = 1 + \alpha / (2\pi) \cdot h_{\nu}(\hat{E}, E_{0}),$$
(2.22)

где

$$g_{\beta} = 3 \ln \left(\frac{m_N}{m_e}\right) - \frac{3}{4} + 4 \left(\frac{\tanh^{-1}\beta}{\beta} - 1\right) \left[\frac{E_0 - E_{\beta}}{3E_{\beta}} - \frac{3}{2} + \ln \left(\frac{2(E_0 - E_{\beta})}{m_e}\right)\right] + \frac{4}{\beta} L \left(\frac{2\beta}{1+\beta}\right) + \frac{1}{\beta} \tanh^{-1}\beta \cdot \left[2(1+\beta^2) + \frac{(E_0 - E_{\beta})^2}{6E_{\beta}^2} - 4 \tanh^{-1}\beta\right], \qquad (2.23)$$

$$h_{\nu} = 3\ln\left(\frac{m_N}{m_e}\right) + \frac{23}{4} + \frac{8}{\hat{\beta}}L\left(\frac{2\hat{\beta}}{1+\hat{\beta}}\right) + 8\left(\frac{\tanh^{-1}\hat{\beta}}{\hat{\beta}} - 1\right) \cdot \\ \cdot \ln\left(\frac{2\hat{E}\hat{\beta}}{m_e}\right) + 4\frac{\tanh^{-1}\hat{\beta}}{\hat{\beta}}\left(\frac{7+3\hat{\beta}^2}{8} - 2\tanh^{-1}\hat{\beta}\right).$$
(2.24)

Здесь m_N — масса нуклона, $\beta = p_\beta/E_\beta$, $\hat{E} = E_0 - E_\nu$, $\hat{\beta} = \hat{p}/\hat{E}$. Функция L(x), фигурирующая в (2.23) — (2.24), есть функция Спенса, определяемая как

$$L(x) = \int_{0}^{x} \frac{\ln(1-t)}{t} \, \mathrm{d}t \,. \tag{2.25}$$

На рисунке 2.10 показан вклад радиационных поправок в бета-спектр и спектр антинейтрино.

В случае бета-спектра изменение формы составляет порядка 6%, в случае спектра антинейтрино порядка 0.5%.

Рисунок 2.10 — Вклад радиационных поправок в форму одиночного спектра, Q = 8 МэВ.

Для поправки h_{ν} в первом порядке по α существует и другой рецепт, представленный в работе [29], который, во-первых, достаточно сложно реализуется и содержит интегралы, которые не выражаются в элементарных функциях, а во-вторых, в среднем, отличается от приведенного выше выражения на 5% (анализ обоих выражений был проведен в работе [9]). С учетом того, что поправка h_{ν} сама по себе достаточно мала, мы будем использовать более простое выражение (2.24) для наших целей.

2.1.5. СЛАБЫЙ МАГНЕТИЗМ

Слабый магнетизм вызван вкладом дополнительного формфактора, кроме g_a и g_v в слабое взаимодействие, что эффективно приводит в взаимодействию магнитного момента ядра и β —электрона. В случае разрешенных переходов гамов-теллеровского типа поправка имеет вид [31]:

$$\delta_{\rm WM} = \frac{4}{3} E_{\beta} \left[\frac{\mu_{\upsilon} + \frac{\langle J_f | \vec{\Lambda} | J_i \rangle}{\langle J_f | \vec{\Sigma} | J_i \rangle}}{2m_N g_A} \right] \left(2 - \frac{m_e^2}{E_{\beta}^2} - \frac{E_0}{E_{\beta}} \right) \,, \tag{2.26}$$

где m_N — масса нуклона, g_A — аксиальный формфактор (при низких энергиях его можно считать постоянной величиной), μ_v — магнитный момент нуклона, $\vec{\Sigma} = \sum_{i} \tau_{i} \vec{\sigma}_{i}$ — оператор спина, $\vec{\Lambda} = \sum_{i} \tau_{i} \vec{l}_{i}$ — оператор углового момента. Здесь $\vec{l}_{i} = [\vec{r}_{i} \times \vec{p}_{i}]$ — орбитальный момент *i*—ого нуклона, $\vec{\sigma}_{i} = 2\vec{S}_{i}, \vec{S}_{i}$ — спин *i*—ого нуклона.

Строго говоря, отношение матричных элементов $\frac{\langle J_f | \vec{\Lambda} | J_i \rangle}{\langle J_f | \vec{\Sigma} | J_i \rangle}$ необходимо рассчитывать для каждого перехода индивидуально, однако часто в литературе для простоты его полагают равным -1/2. Данное приближение было подробно рассмотрено в работе [31], там же было показано, что оно вносит менее 1% неопределенности в кумулятивные спектры антинейтрино.

Таким образом, окончательно поправка слабого магнетизма имеет вид:

$$\delta_{\rm WM} \approx \frac{4}{3} E_{\beta} \frac{\mu_{\nu} - 1/2}{g_A m_N} \left(1 - \frac{m_e^2}{2E_{\beta}^2} - \frac{E_0}{2E_{\beta}} \right) \approx 0.5\% E_{\beta}$$
(2.27)

На рисунке 2.11 показан вклад поправки слабого магнетизма $1 + \delta_{\text{WM}}$. Из рисунка видно, что слабый магнетизм меняет форму одиночного спектра примерно на 2 - 2.5% при высоких значениях Q (при низких $Q \approx 1 - 2$ МэВ вклад будет порядка 1%).

Рисунок 2.11 — Вклад поправки слабого магнетизма к форме одиночного спектра, Q = 8 МэВ.

2.1.6. АТОМНЫЙ ОБМЕН

Неортогональность волновых функций начального и конечного состояний атома приводит к дополнительным процессам, в ходе которых β электрон может занять одно из возможных состояний на атомной оболочке, вытесняя с неё тем самым первоначально связанный электрон атома. Экспериментально этот процесс невозможно отличить от обычного β -распада, однако можно теоретически описать вклад данного процесса в форму одиночных бета-спектров.

Подробное обсуждение этой поправки представлено в работе [22], мы же воспользуемся полученным там результатом. Поправка X(Z, E) параметризована в следующем виде [22]:

$$X(Z,E) \approx 1 + \left(\frac{a}{W'} + \frac{b}{W'}^2 + c \cdot \exp(-dW') + e \sin\left[(W - f)^g + h \right] / W^i \right) \eta(W - f), \qquad (2.28)$$

где $W = (T_{\beta} + m_e)/m_e$, W' = W - 1, $\eta(x) - функция Хэвисайда,$ набор параметров аппроксимации $\{a, b, c, d, e, f, g, h, i\}$ зависит от Z (явные значения этих параметров для 2 < Z < 120 представлены в работе [22]). Множитель $\eta(W - f)$ мы добавили искусственно, чтобы гарантировать, что отрицательное число не будет возводиться в действительную степень (речь идет про первое слагаемое в аргументе sin в выражении 2.28).

Вклад этой поправки в форму одиночных спектров сильно зависит от Z, что иллюстрирует ниже рисунок 2.12. При определенных значениях Z вклад поправки $X(Z, E) \ll 1\%$, при других может достигать до 4%.

Рисунок 2.12 — Вклад поправки атомного обмена (atomic exchange) в форму одиночных спектров для различных Z при Q = 6 МэВ

2.1.7. АТОМНОЕ НЕСООТВЕТСТВИЕ

Данная поправка, как и атомный обмен, связана с тем, что волновые функции начального и конечного состояний атома не являются ортогональными, то есть принадлежат разным гамильтонианам. Атомное несоответствие учитывает несколько эффектов, основной из которых заключается в перестройке электронных оболочек атома [22].

Поправка основана на рассмотрении замены E_0 на $E_0 - \overline{\Delta E}_{ex}$, где $\overline{\Delta E}_{\mathrm{ex}}$ — разность между энергиями связи начального и конечного атомов. Явный вид поправки описывается следующим уравнением

$$r(Z,E) = 1 - \frac{1}{m_e(E_0 - E)} \cdot \frac{\partial^2}{\partial Z^2} B, \qquad (2.29)$$

где B(Z) — полная энергия связи нейтрального атома с Z + 1 протоном в ядре.

Вторая производная B(Z) по Z, фигурирующая в (2.29), связана с величиной $\overline{\Delta E}_{\rm ex}$ следующим образом:

$$\frac{\partial^2}{\partial Z^2} B = -2\overline{\Delta E}_{\text{ex}} \,. \tag{2.30}$$

Удобно использовать следующую параметризацию, полученную на основе численных расчетов [22]:

$$\frac{\partial^2}{\partial Z^2} B = \left(44.200 \, Z^{0.41} + 2.3196 \cdot 10^{-7} Z^{4.45}\right) \cdot 10^{-6} \text{ M} \circ \text{B}.$$
 (2.31)

На рисунке 2.13 представлен вклад поправки атомного несоответствия (atomic mismatch) к форме одиночных спектров.

Рисунок 2.13 — Вклад поправки atomic mismatch к форме одиночных спектров, Z = 46, Q = 6 МэВ.

Из явного вида (2.29) и рисунка 2.13 видно, что поправка в основном проявляет себя на отрезке $T \in [Q-50 \text{ кэB}; Q]$ (в случае бета-спектра) — в остальной части спектра ею можно пренебречь. При реализации конверсии данная поправка учитывается "автоматически", что связано с регуляризацией спектра на концах отрезка [0, Q] (в случае бета-спектра) или $[0, E_0]$ (в случае спектра антинейтрино).

2.1.8. ВЫВОДЫ

Подытожив вышеизложенное, приведем в сводной таблице 2 характерные вклады от каждой поправки и проиллюстрируем их на рисунках 2.14 — 2.15.

Таблица 2. Характерный вклад поправок в форму одиночных спектров

N⁰	Поправка Δ	Формула	$\max 1-\Delta , \%$
1	Функция Ферми $F(Z, E)$	2.13	≈ 100
2	Конечный размер $L_0(Z, E)$	2.16	pprox 1-2
3	Конечный размер $C(Z, E, E_0)$	2.19	pprox 1.5 - 2.5
4	Экранирование $S(Z, E)$	2.20	≈ 2.5
5	Радиационные поправки $G_{\beta}(H_{\nu})$	2.22	$\approx 6 (1)$
6	Слабый магнетизм $1 + \delta_{\mathrm{WM}}$	2.27	pprox 2-2.5
7	Atomic exchange $X(Z, E)$	2.28	Существенно зависит от Z

Рисунок 2.14 — Вклад поправок в форму одиночного бета-спектра, Z=46, $Q=9~{\rm M}{\rm sB}.$

Рисунок 2.15 — Вклад поправок в форму одиночного спектра антинейтрино, Z = 46, Q = 9 МэВ.

2.2. КОРРЕЛЯЦИОННАЯ ФУНКЦИЯ ПЕРЕСЧЕТА

Кумулятивные спектры β -электронов $\rho_{\beta}(E_{\beta})$ и антинейтрино $\rho_{\nu}(E_{\nu})$ имеют очень схожие формы при кинетических энергиях E > 2.5 МэВ основные различия вытекают из различной массы и электрического заряда. В [10] связь между двумя спектрами устанавливается в виде:

$$\rho_{\beta} \left(E_{\beta} - E_{\text{shift}} \right) \cdot k(E) = \rho_{\nu}(E_{\nu}), \qquad (2.32)$$

где E_{shift} — усредненный сдвиг энергии, учитывающий кулоновское взаимодействие электрона и ядра ($E_{\text{shift}} \in [0; 100]$ кэВ). Поправочная функция k(E) учитывает в себе все остальные различия и не имеет какой-либо физической интерпретации. Ее мы будем называть корреляционной функцией пересчета.

Бета-спектр ²³⁸U был получен в работе [33] с использованием ρ_{β}^{235} , однако в связи с малой статистикой экспериментальных данных и большой погрешностью измерений ($\delta \in [3.2\%; 28\%]$) провести его полноценную инверсию нельзя. Вместо этого в этой же работе предлагается использовать корреляционную функцию пересчета k(E) для нахождения ρ_{ν}^{238} , которая определяется из метода *ab initio* и экспериментальных данных ILL (разумнее всего получить её из спектров ²³⁵U). Кулоновская сдвижка E_{shift} полагается равной 50 кэВ.

Рисунок 2.16 — Корреляционная функция пересчета, $E_{\rm shift} = 50$ кэВ

3. РЕАЛИЗАЦИЯ, АНАЛИЗ ПОЛУЧЕННЫХ РЕЗУЛЬТАТОВ

Экспериментальные данные эксперимента ILL с мелким шагом (50 кэВ для ²³⁵U и 100 кэВ для ²³⁹Pu, ²⁴¹Pu) представлены в работе [32] (в дальнейшем мы будем обозначать их $\rho_{\beta, \text{ ILL}}^i$, где индекс *i* принимает значения 235, 239 и 241 соответственно). Помимо этого, по результатам эксперимента НИЦ КИ [15] были получены данные вида:

$$R = \frac{\rho_{\beta, \text{ KI}}^{235} / \rho_{\beta, \text{ ILL}}^{235}}{\rho_{\beta, \text{ KI}}^{239} / \rho_{\beta, \text{ ILL}}^{239}}, \qquad (3.1)$$

график которых представлен на рисунке 3.1. Отметим, что экспериментальные данные в [32] для ²³⁵U приведены в интервале [1.5; 9.6] МэВ и для ²³⁹Pu в [1.5; 8] МэВ. Экспериментальные данные НИЦ КИ лежат в интервале [1.5; 8] МэВ.

Рисунок 3.1 — Экспериментальные данные НИЦ КИ — отношение отношений кумулятивных спектров 235 U и 239 Pu (3.1)

График 3.1 иллюстрирует, что отношение $\rho_{\beta, \text{ KI}}^{(235)} / \rho_{\beta, \text{ KI}}^{239}$ лежит ниже отношения $\rho_{\beta, \text{ ILL}}^{235} / \rho_{\beta, \text{ ILL}}^{239}$ на $\approx 5\%$.

Рассмотрим две предельные гипотезы:

1) Кривая спектра β -частиц ²³⁵U группы ILL ошибочно завышена на $\approx 5\%$; 2) Кривая спектра β -частиц ²³⁹Pu группы ILL ошибочно занижена на $\approx 5\%$;

Для удобства изложения введем "функцию" Convers $(\rho_{\beta}^{i}, N_{S} \times N_{p})$, где первый аргумент ρ_{β}^{i} — кумулятивный бета-спектр, который будет инвертироваться в спектр антинейтрино, N_{S} — число срезов, N_{p} — число точек в срезе. Спектры $\rho_{\beta, \text{ KI}}$ определим в соответствиями с гипотезами как

$$\rho_{\beta, \text{ KI}}^{235} = \rho_{\beta, \text{ ILL}}^{235} \cdot R,
\rho_{\beta, \text{ KI}}^{239} = \rho_{\beta, \text{ ILL}}^{239} / R.$$
(3.2)

Для спектров $\rho_{\beta, \text{ KI}}^{235}$, $\rho_{\beta, \text{ ILL}}^{239}$, $\rho_{\beta, \text{ ILL}}^{239}$ реализуем конверсию по изложенному в части (2.1) методу, подбирая число точек N_p в одном срезе так, чтобы ширина среза составляла порядка 250 кэВ:

$$\rho_{\nu, \text{ KI}}^{235} = \text{Convers}(\rho_{\beta, \text{ KI}}^{235}, 26 \times 5),$$

$$\rho_{\nu, \text{ KI}}^{239} = \text{Convers}(\rho_{\beta, \text{ KI}}^{239}, 22 \times 3),$$

$$\rho_{\nu, \text{ KI convers ILL}}^{235} = \text{Convers}(\rho_{\beta, \text{ ILL}}^{235}, 26 \times 5),$$

$$\rho_{\nu, \text{ KI convers ILL}}^{239} = \text{Convers}(\rho_{\beta, \text{ ILL}}^{239}, 22 \times 3).$$
(3.3)

Представим полученные результаты на рисунках 3.2 — 3.3 (черные линии соответствуют сравнению нашей конверсии и конверсии Huber [9]). Заметим, что различия нашей модели с моделью Huber в случае ²³⁵U составляют порядка ±0.5% (при энергиях 8 МэВ разница увеличивается до ±2%, что связано с выбором начальной точки конверсии), а в случае ²³⁹Pu — до ±4%. В среднем же модели хорошо совпадают — средняя величина отклонения $\approx 0.1\%$, что можно не учитывать по сравнению с погрешностями процедуры и значением поправки $\overline{R} \approx \pm5\%$.

Рисунок 3.2 — Отношения спектров $\rho_{\rm KI}^{235}/\rho_{\rm ILL}^{235},$ гипотеза 1

Рисунок 3.3 — Отношения спектров $\rho_{\rm \,ILL}^{239}/\rho_{\rm \,KI}^{239},$ гипотеза2

Заметим, что процедура конверсии в среднем устойчива относительно изменения исходных спектров ILL на $\approx 5\%$ — спектры антинейтрино отличаются на эту же величину.

Полученные спектры антинейтрино мы аппроксимируем функцией (2.7), полученные параметры приведены в таблице 3.

Таблица 3. Результаты аппроксимации полиномом 5-ой степени логарифма спектров антинейтрино

	235 KI	239 KI	235 KI convers ILL	239 KI convers ILL
a_1	4.44 ± 0.04	4.636 ± 0.014	4.365 ± 0.017	4.84 ± 0.03
a_2	-4.61 ± 0.02	-5.342 ± 0.009	-4.578 ± 0.011	-5.42 ± 0.02
a_3	2.0886 ± 0.007	2.580 ± 0.003	2.099 ± 0.004	2.555 ± 0.006
a_4	$(-5.29 \pm 0.02) \cdot 10^{-1}$	$(-6.609 \pm 0.009) \cdot 10^{-1}$	$(-5.294 \pm 0.010) \cdot 10^{-1}$	$(-6.58 \pm 0.02) \cdot 10^{-1}$
a_5	$(6.29 \pm 0.06) \cdot 10^{-2}$	$(7.65 \pm 0.02) \cdot 10^{-2}$	$(6.19 \pm 0.03) \cdot 10^{-2}$	$(7.91 \pm 0.05) \cdot 10^{-2}$
a_6	$(-2.91 \pm 0.07) \cdot 10^{-3}$	$(-3.32 \pm 0.03) \cdot 10^{-3}$	$(-2.77 \pm 0.03) \cdot 10^{-3}$	$(-3.68 \pm 0.07) \cdot 10^{-3}$

Согласно [17], спектр позитронов можно представить в виде:

$$\rho_e(E_\nu) = \rho_\nu \left(E_\nu + \frac{2E_\nu E_e + (m_n - m_p)^2 - m_e^2}{2m_p} \right) \cdot \sigma(E_\nu) , \qquad (3.4)$$

где $E_e = E_{\nu} - (m_n - m_p)$ — энергия позитрона, m_n, m_p — массы нейтрона и протона соответственно, $\sigma(E_{\nu})$ — полное сечение обратного бета-распада. Мы рассмотрим две модели сечения, описанные в главе 1. Напомним, что "наивное" описывается уравнением [17]:

$$\sigma_{\text{Naive}} = 9.52 \cdot 10^{-44} \, p_e E_e \ \text{cm}^2 \,, \tag{3.5}$$

а модель [19]:

$$\sigma_{\rm Str} = p_e \, E_e \, E_v^{-0.07056 + 0.02018 \cdot \ln(E_v) - 0.001953 \cdot \ln^3(E_v)} \cdot 10^{-43} \, \rm cm^2 \qquad (3.6)$$

Наконец, взвешенное сечение есть:

$$\sigma^{i} = \int_{1.8}^{8} \rho_{e}^{i}(E_{\nu}) \,\mathrm{d}E_{\nu} \,. \tag{3.7}$$

Полученные значения взвешенных сечений для моделей Naive и Strumia2003 представлены в таблице 4.

	Naive, $cm^2/fission$	Strumia2003, $cm^2/fission$
σ_{ILL}^{235}	$(6.61 \pm 0.11) \cdot 10^{-43}$	$(6.49 \pm 0.10) \cdot 10^{-43}$
σ_{KI}^{235}	$(6.22 \pm 0.12) \cdot 10^{-43}$	$(6.11 \pm 0.10) \cdot 10^{-43}$
σ^{239}_{ILL}	$(4.28 \pm 0.11) \cdot 10^{-43}$	$(4.21 \pm 0.10) \cdot 10^{-43}$
σ_{KI}^{239}	$(4.59 \pm 0.10) \cdot 10^{-43}$	$(4.48 \pm 0.10) \cdot 10^{-43}$

Таблица 4. Значения взвешенных сечений

Из результатов, представленных в таблице 4, следует, что отношение сечений:

$$\left(\frac{\sigma_{\rm KI}^{235}}{\sigma_{\rm ILL}^{239}}\right)_{\rm Str.} = \left(\frac{\sigma_{\rm KI}^{235}}{\sigma_{\rm ILL}^{239}}\right)_{\rm Naive} = \left(\frac{\sigma_{\rm ILL}^{235}}{\sigma_{\rm KI}^{239}}\right)_{\rm Str.} = \left(\frac{\sigma_{\rm ILL}^{235}}{\sigma_{\rm KI}^{239}}\right)_{\rm Naive} \approx 1.45 \pm 0.05 \quad (3.8)$$

является постоянной величиной и не зависит от выбора гипотезы. Заметим также, что отношение сечений с "поправкой" R отличается от отношения сечений без "поправки" на $\approx 5\%$.

В таблице 5 приведены итоговое сравнение измеренных [5,6] сечений и расчетных.

Таблица 5. Значения взвешенных сечений, полученные из экспериментов и по расчетным конверсионным спектрам.

	σ^{235}	σ^{239}	$\sigma^{235}/\sigma^{239}$
Daya Bay [6]	6.10 ± 0.15	4.32 ± 0.25	1.41 ± 0.09
RENO [5]	6.15 ± 0.19	4.18 ± 0.26	1.47 ± 0.10
Среднее	≈ 6.13	≈ 4.25	1.44 ± 0.10
Huber-Mueller	6.60 ± 0.14	4.33 ± 0.11	1.52 ± 0.05
KI	6.11 ± 0.10	4.21 ± 0.11	1.45 ± 0.05

4. ЗАКЛЮЧЕНИЕ

В данной работе была предложена модель конверсии для расчета реакторных спектров антинейтрино, на основе которой было разработано программное обеспечение для реализации описанной процедуры. Программа была опробована на данных Монте-Карло моделирования синтетических кумулятивных бета-спектров, после чего была воспроизведена конверсия реальных экспериментальных данных группы ILL с поправкой НИЦ "КИ", в результате чего получены спектры антинейтрино от изотопов 235 U,²³⁹ Pu,²⁴¹ Pu. С использованием полученного спектра ρ_{ν}^{235} был пересчитан спектр ρ_{ν}^{238} . Предложенное программное обеспечение было запатентовано в рамках внутренней НИР НИЦ КИ "Наука и практика нейтринных исследований на АЭС".

В работе показано, что процедура конверсии устойчива к спектральной поправке и, как следствие, к ней устойчивы и отношения взвешенных сечений. Полученные значения σ^{235} , σ^{239} и их отношения согласуются с последними экспериментальными данными в пределах погрешностей, что косвенно подтверждает гипотезу о неправильной нормировке спектров β частиц ²³⁵U группы ILL и решает проблему реакторной антинейтринной аномалии.

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- [1] Pontecorvo B. Inverse β -decay // National Research Council of Canada, Chalk River — 1946 Γ (Report PD-205).
- [2] Ольшевский А. Г. Результаты и перспективы нейтринных реакторных экспериментов // Успехи физических наук. — 2014. — сент. — т. 184, №.5 — 6 с.
- [3] Hayes A. C., Vogel P. Reactor Neutrino Spectra // Annual Review of Nuclear and Particle Science. — 2016. — окт. — т. 66, №1. — 30 с. — arXiv:1605.02047 [hep-ph]
- [4] Evolution of the Reactor Antineutrino Flux and Spectrum at Daya Bay / F. An [и др.] // Phys. Rev. Lett 2017. апр. 7 с. arXiv:1704.01082 [hep-ex]
- [5] Fuel-composition dependent reactor antineutrino yield at RENO / G. Bak
 [и др.] // Phys. Rev. Lett 2018. июнь 6 с. arXiv:1806.00574
 [hep-ex]
- [6] Extraction of the ²³⁵U and ²³⁹Pu Antineutrino Spectra at Daya Bay / F. An [и др.] // Phys. Rev. Lett — 2019. — апр. — 7 с. — arXiv:1904.07812 [hep-ex]
- [7] Kopeikin V. I. Flux and spectrum of reactor antineutrinos // Phys. Atom.
 Nucl. 2012. апр. т.75, №2 10 с.
- [8] Improved predictions of reactor antineutrino spectra / Mueller T. A. [и др.]
 // Phys. Rev. 2011. май. т. 83, №5. 17 с. arXiv:1101.2663
 [hep-ex]

- [9] Huber P. Determination of antineutrino spectra from nuclear reactors // Phys. Rev. — 2011. — авг. — т. 84, №2 — 20 с. — arXiv:1106.0687 [hep-ph]
- [10] Schreckenbach K., Colvin G., Gelletly W., Von Feilitzsch F. Determination of the antineutrino spectrum from ²³⁵U thermal neutron fission products up to 9.5 MeV // Phys. Letters — 1985. — окт. — с. 325 – 330
- [11] Hanh A., Schreckenbach K., Gelletly W., Von Feilitzsch F, Colvin G. and Kruscheb B. Antineutrino spectra from ²⁴¹Pu and ²³⁹Pu thermal neutron fission products // Phys. Letters B. — 1989. — февраль — с. 365 – 368
- [12] Von Feilitzsch F., Hahn A., Schreckenbach K. Experimental beta-spectra from ²³⁹Pu and ²³⁵U thermal neutron fission products and their correlated antineutrino spectra // Phys. Letters B. — 1982. — дек. — с. 162 – 166
- [13] The Reactor Antineutrino Anomaly / G. Mention [и др.] // Phys.Rev.D — 2011. — март. — 21 с. — arXiv:1101.2755v4 [hep-ex]]
- [14] Копейкин В.И., Панин Ю.Н., Сабельников А.А. Измерение отношения кумулятивных спектров бета-частиц от продуктов деления ²³⁵U и ²³⁹Pu для решения задач физики реакторных антинейтрино // Ядерная физика — 2021. — том 84 №1. — с. 3 – 11 — DOI: 10.31857/S0044002721010128
- [15] Kopeikin V., Skorokhvatov M., Titov O. Reevaluating reactor antineutrino spectra with new measurements of the ratio between ²³⁵U and ²³⁹Pu β spectra // arXiv preprint - 2021. — март. — arXiv:2103.01684 [nucl-ex]
- [16] Reines F., Cowan C. L. Detection of the Free Neutrino // Phys. Rev. —
 1953. нояб. с. 830 831 Physical review journals archive
- [17] Фаянс С.А. Радиационные поправки и эффекты отдачи в реакции $\widetilde{\nu_e} + p \rightarrow n + e^+$ при низких энергиях // Ядерная физика. — 1985. — т. 42, вып. 4(10) — 12 с.
- [18] Vogel P., Beacom J.F. The angular distribution of the reaction $\tilde{\nu_e} + p \rightarrow n + e^+ //$ Phys. Rev. D. -1999. март. -10 с. arXiv:hep-ph/9903554

- [19] Strumia A., Vissani F. Precise quasielastic neutrino/nucleon cross section
 // Phys. Letters B 2003. фев. 12 с. arXiv:astro-ph/0302055
- [20] Vogel P. Conversion of electron spectrum associated with fission into the antineutrino spectrum // Phys. Rev. — 2007. — авг. — 8 с. arXiv:0708.0556 [hep-ph]
- [21] Huber P., Schwetz T. Precision spectroscopy with reactor antineutrinos // Phys. Rev. D. — 2004. — сент. — DOI: 10.1103/PhysRevD.70.053011
- [22] High precision analytical description of the allowed β spectrum shape / Hayen L. [и др.] // Reviews of modern physics — 2018. — март. — 63 с. — arXiv:1709.07530 [nucl-th]
- [23] Fermi E. Versuch einer Theorie der β -Strahlen. I // Zeitschrift für Physik - 1934. – март. – c. 161 – 177 – DOI:10.1007/BF01351864
- [24] Elton L. R. B. A semi-empirical formula for the nuclear radius // Nuclear physics — 1958. — март — с. 173 – 178 — DOI:10.1016
- [25] Behrens H., Janecke J. Numerical Tables for Beta-Decay and Electron Capture // Springer — 1969. — DOI:10.1007/b19939
- [26] Wilkinson D. H. Evaluation of Beta-Decay II. Finite mass and size effects // Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 1990.
 май с. 509 515
- [27] Behrens H., Buhring W. Electron radial wave functions and nuclear betadecay // Clarendon press, Oxford — 1982.
- [28] Sirlin A. General Properties of the Electromagnetic Corrections to the Beta Decay of a Physical Nucleon // Phys. Rev — 1967. — дек. — т. 167, №1767 — 9 с. — Physical review journals archive
- [29] Batkin I.S., Sundaresan M.K. Effect of radiative corrections on the solar neutrino spectrum // Phys. Rev. D. — 1995. — ноябрь. — с. 5362 – 5365
 — DOI:10.1103/PhysRevD.52.5362

- [30] Sirlin A. Radiative Correction to the $\bar{\nu}_e$ (ν_e) Spectrum in β -decay // Phys.Rev.D 2011. май 7 с. arXiv:1105.2842 [hep-ph]
- [31] Hayes A., Wang X. Weak magnetism correction to allowed β decay for reactor antineutrino spectra // Phys. Rev. C — 2017. — июнь — DOI:10.1103/PhysRevC.95.064313
- [32] Haag N., von Feilitzsch F., Oberauer L., Potzel W., Schreckenbach K. Re-publication of the data from the BILL magnetic spectrometer: The cumulative β-spectra of the fission products of ²³⁵U, ²³⁹Pu and ²⁴¹Pu // arXiv e-prints. — 2014. — май — 5 с. — arXiv:1405.3501 [nucl-ex]
- [33] Experimental Determination of the Antineutrino Spectrum of the Fission Products of ²³⁸U / Haag N. [и др.] // Phys. Rev. Lett. — 2013. — дек. — 5 с. — arXiv:1312.5601 [nucl-ex]

ПРИЛОЖЕНИЕ А

ВСПОМОГАТЕЛЬНЫЕ ДАННЫЕ

	b_1	b_2	b_3	b_4	b_5	b_6
a_{-1}	0.115	-1.8123	8.2498	-11.223	-14.854	32.086
a_0	-0.00062	0.007165	0.01841	-0.53736	1.2691	-1.5467
a_1	0.02482	-0.5975	4.84199	-15.3374	23.9774	-12.6534
a_2	-0.14038	3.64953	-38.8143	172.137	-346.708	288.787
a_3	0.008152	-1.15664	49.9663	-273.711	657.629	-603.703
a_4	1.2145	-23.9931	149.972	-471.299	662.191	-305.68
a_5	-1.5632	33.4192	-255.133	938.53	-1641.28	1095.36

Таблица А1. Коэффициенты параметризации поправки $L_0(Z, E)$ для электронов: воспроизведение таблицы 1 работы [26].

Таблица А2. Узлы сеточной функции $N(\tilde{Z})$ для параметризации поправки на экранирование: воспроизведение таблицы 4.7 работы [27].

\tilde{Z}	1	8	13	16	23	27	29	49	84	92
$N(\tilde{Z})$	1.000	1.420	1.484	1.497	1.52	1.544	1.561	1.637	1.838	1.907

ПРИЛОЖЕНИЕ В

КУМУЛЯТИВНЫЕ СПЕКТРЫ РЕАКТОРНЫХ АНТИНЕЙТРИНО ДЛЯ ²³⁵U И ²³⁸U

Таблица В1. Кумулятивные спектры антинейтрино изотопов	²³⁵ U и	$^{238}\mathrm{U}$
с учетом спектральной поправки НИЦ "КИ".		

$E_{\nu}, \text{ MeV}$	ρ_{ν}^{235} , fission ⁻¹ MeV ⁻¹	$\delta^{235}, \%$	ρ_{ν}^{238} , fission ⁻¹ MeV ⁻¹	$\delta^{238},\%$
2.00	1.28	< 1.0	1.58	≈ 3.5
2.25	1.10	-	1.40	-
2.50	$8.55 \cdot 10^{-1}$		1.16	
2.75	$7.40 \cdot 10^{-1}$		1.05	
3.00	$6.08\cdot10^{-1}$		$8.95 \cdot 10^{-1}$	
3.25	$5.29\cdot 10^{-1}$		$7.61 \cdot 10^{-1}$	3.1
3.50	$4.16 \cdot 10^{-1}$		$6.05\cdot10^{-1}$	2.6
3.75	$3.44 \cdot 10^{-1}$	1.1	$5.12 \cdot 10^{-1}$	2.6
4.00	$2.73 \cdot 10^{-1}$	1.2	$4.12 \cdot 10^{-1}$	2.6
4.25	$2.26 \cdot 10^{-1}$	1.4	$3.44 \cdot 10^{-1}$	2.8
4.50	$1.69 \cdot 10^{-1}$	1.7	$2.62 \cdot 10^{-1}$	2.9
4.75	$1.23 \cdot 10^{-1}$	1.8	$1.93 \cdot 10^{-1}$	3.3
5.00	$9.98\cdot 10^{-2}$	1.9	$1.54 \cdot 10^{-1}$	3.7
5.25	$8.00 \cdot 10^{-2}$	2.0	$1.24 \cdot 10^{-1}$	4.1
5.50	$6.27 \cdot 10^{-2}$	2.2	$1.00 \cdot 10^{-1}$	5.0
5.75	$5.16 \cdot 10^{-2}$	2.4	$7.83 \cdot 10^{-2}$	5.9
6.00	$3.63 \cdot 10^{-2}$	2.7	$5.24 \cdot 10^{-2}$	7.6
6.25	$2.49 \cdot 10^{-2}$	3.0	$3.45\cdot10^{-2}$	10.6
6.50	$2.05 \cdot 10^{-2}$	3.0	$2.94\cdot 10^{-2}$	12.6
6.75	$1.69 \cdot 10^{-2}$	3.3	$2.88 \cdot 10^{-2}$	11.7
7.00	$8.70 \cdot 10^{-3}$	3.6	$1.60 \cdot 10^{-2}$	14.1
7.25	$6.03 \cdot 10^{-3}$	4.1	$9.58 \cdot 10^{-3}$	21.9
7.50	$4.63 \cdot 10^{-3}$	4.4	$7.12 \cdot 10^{-3}$	30
7.75	$2.96 \cdot 10^{-3}$	5.0	$4.93 \cdot 10^{-3}$	≈ 30
8.00	$1.59\cdot 10^{-3}$	7.0	$3.09 \cdot 10^{-3}$	≈ 30