Национальный исследовательский ядерный университет «МИФИ» Институт Ядерной Физики и Технологий Кафедра № 40 "Физика элементарных частиц"

Выпускная квалификационная работа магистра на тему

Применение свёрточных нейронных сетей для реконструкции положения события в эксперименте DEAP-3600

Выполнил: Студент гр. М19-115 Ильясов А.И. Научный руководитель: к.ф.-м.н. Гробов А.В.

Оглавление

1) Введение

- а) Темная материя Вселенной
- b) Детекторы по поиску темной материи
- с) Детектор DEAP-3600
- d) Описание использующихся алгоритмов и цель работы
- 2) Исследуемые алгоритмы реконструкции
 - а) Полносвязная нейронная сеть
 - b) Нейронная сеть с короткими связями
 - с) Нейронная сеть со сверточными слоями
- 3) Полученные результаты
- 4) Заключение

Введение

Детекторы по поиску темной материи

Particle Data Group et al. Review of particle physics //Progress of Theoretical and Experimental Physics. – 2020. – T. 2020. – №. 8. – C. 083C01.

300 т. воды.

Имеющиеся алгоритмы

The DEAP Collaboration, Search for dark matter with a 231-day exposure of liquid argon using DEAP-3600 at SNOLAB, Physical Review D 100.2 (2019)

I. После фидуциализации ошибка первого алгоритма около 13%;
 II. Алгоритмы согласуются по Z-координате с точностью до 35 мм. для 50% событий;

III. Второй алгоритм для верхней части детектора, первый алгоритм - для нижней

части детектора

Цель работы

Создание алгоритма на основе алгоритмов машинного обучения, который будет:

- использоваться во всём объеме детектора R < 850 мм. Это позволит улучшить реконструкцию во всем детекторе и увеличить чувствительный объем детектора;
- 2) **работать точнее**, чем существующий алгоритм реконструкции;
- 3) дополнять и поддерживать существующий алгоритм.

Исследуемые алгоритмы

Полносвязная нейронная сеть

Hopfield J. J. Neural networks and physical systems with emergent collective computational abilities //Proceedings of the national academy of sciences. – $1982. - T. 79. - N_{\odot}. 8. - C. 2554-2558.$

Нейронная сеть с короткими связями

Li Y. et al. A concatenating framework of shortcut convolutional neural networks //arXiv preprint arXiv:1710.00974. – 2017.

Преимущество: Меньше теряется первоначальная информация о данных Недостатки: 1) Необходимость соответствия длин векторов начала и конца shortcut-связи 2) Длительность тренировки

1D Сверточная нейронная сеть

LeCun Y. et al. Backpropagation applied to handwritten zip code recognition //Neural computation. – 1989. – T. 1. – №. 4. – C. 541-551.

2D Сверточная нейронная сеть

Matsugu M. et al. Subject independent facial expression recognition with robust face detection using a convolutional neural network //Neural Networks. – 2003. – T. 16. – N_{\odot} . 5-6. – C. 555-559.

Полученные результаты

Полученные результаты: работоспособность

	Точность	$X_{\rm FWHM}, {\rm mm}$	$Y_{\rm FWHM}$, MM	Z_{FWHM} , mm
m R < 850	0.959 ± 0.003	47 ± 4	49 ± 3	51 ± 7
$\mathrm{R} < 720$	0.944 ± 0.001	64 ± 3	64 ± 7	66 ± 2
m R < 630	0.933 ± 0.002	75 ± 3	76 ± 6	78 ± 2
R < 430	0.899 ± 0.007	91 ± 7	92 ± 8	105 ± 15
720 < R < 850	0.983 ± 0.003	41 ± 9	42 ± 8	42 ± 9
630 < R < 720	0.966 ± 0.005	55 ± 5	55 ± 8	42 ± 5
430 < R < 630	0.952 ± 0.002	79 ± 10	77 ± 8	58 ± 2
200 < R < 430	0.913 ± 0.004	90 ± 5	88 ± 3	98 ± 7

Полученные результаты: эффективность

Полученные результаты: эффективность

Полученные результаты: эффективность

Полученные результаты: равные радиусы

Полученные результаты: равные объемы

Полученные результаты: равные энергии

qPE - Общее количество зарегистрированных фотоэлектронов

Заключение

- 1) Получены данные Монте-Карло моделирования естественной радиоактивности аргона-39;
- Было протестировано четыре модели машинного обучения: полносвязная нейронная сеть, нейронная сеть с короткими связями, одномерная и двумерная сверточная нейронная сеть. Наилучшим образом работает сверточная нейронная сеть;
- Все алгоритмы выполняют реконструкцию положения во всём объеме детектора R < 850 мм;
- Средняя ошибка по всем трем координатам составляет не более 6 мм, с разрешением FWHM около 50 мм для 76% всех событий
- Сравнение моделей с используемыми алгоритмами показало, что во всех областях детектора по R и по Q алгоритм работает эффективно и даже лучше в области 300 < R < 600 мм.

Дополнительные картинки графики цифры то есть Back-up слайды

Распределение Рэлея

$$\sigma_g = (2 - \pi/2)\sigma^2$$
 $\mu_g = \sqrt{\pi/2}\sigma$
 $f(x;\sigma) = rac{x}{\sigma^2} \exp\left(-rac{x^2}{2\sigma^2}
ight)$
 $u_g = 0, \sigma > 0$

Тёмная материя Вселенной

Zwicky F. On the Masses of Nebulae and of Clusters of Nebulae //The Astrophysical Journal. – 1937. – T. 86. – C. 217.

Упрощенный график, показывающий предсказанное сечение рассеяния вимпов на нуклонах как функцию массы вимпов. Асимметричные модели темной материи (голубая область) предсказывают WIMP с массой в несколько ГэВ / с2; общие модели WIMP (темно-синяя область) предсказывают большие массы в сотни ГэВ / с2 или более. Части этих областей параметров были исследованы и исключены текущими экспериментами (красная область). Большая часть ожидаемого пространства параметров может быть исследована в ближайшем будущем, пока не станет актуальным фон когерентного нейтрино-ядерного рассеяния (желтая область), мешающий возможным сигналам темной материи.

BOXPLOT MBLIKELIHOOD

BOXPLOT TIMEFIT2

BOXPLOT SHORTCUT

BOXPLOT FCNN

BOXPLOT CONVNN

R < 850

FCNN

Shortcut

Layer (type)	Output	Shape
Input_765 (InputLayer)	[(None,	, 765)]
block_1 (BatchNormalization)	(None,	765)
block_1_1000nodes (Dense)	(None,	1000)
block_1_255nodes (Dense)	(None,	255)
block_1_3nodes (Dense)	(None,	3)
block_1_765nodes (Dense)	(None,	765)
add_from_Input (Add)	(None,	765)
block_2 (BatchNormalization)	(None,	765)
block_2_1000nodes (Dense)	(None,	1000)
block_2_255nodes (Dense)	(None,	255)
 block_2_3nodes (Dense)	(None,	3)
block_2_765nodes (Dense)	(None,	765)
add_from_block1 (Add)	(None,	765)
block_3 (BatchNormalization)	(None,	765)
block_3_1000nodes (Dense)	(None,	1000)
block_3_255nodes (Dense)	(None,	255)
block_3_3nodes (Dense)	(None,	3)
block_3_765nodes (Dense)	(None,	765)
add_from_block2 (Add)	(None,	765)
output_block (BatchNormalizatio	(None,	765)
255nodes (Dense)	(None,	255)
3nodes_output (Dense)	(None,	3)

ConvNN

Layer (type)	Output Shape
input_11 (InputLayer)	[(None, 765, 1)]
conv1d (Conv1D)	(None, 383, 16)
conv1d_1 (Conv1D)	(None, 192, 32)
conv1d_2 (Conv1D)	(None, 96, 64)
conv1d_3 (Conv1D)	(None, 96, 128)
conv1d_4 (Conv1D)	(None, 96, 256)
flatten (Flatten)	(None, 24576)
dense_55 (Dense)	(None, 255)
dense_56 (Dense)	(None, 3)

2D ConvNN

Layer (type)	Output	Shape
16f_5x5k_relu_same (Conv2D)	(None,	128, 128, 16)
2x2p_2x2s_1 (MaxPooling2D)	(None,	64, 64, 16)
64f_2x2k_relu_same (Conv2D)	(None,	64, 64, 64)
2x2p_2x2s_2 (MaxPooling2D)	(None,	32, 32, 64)
128f_2x2k_relu_same (Conv2D)	(None,	32, 32, 128)
2x2p_2x2s_3 (MaxPooling2D)	(None,	16, 16, 128)
flatten_3 (Flatten)	(None,	32768)
relu_4096nodes (Dense)	(None,	4096)
relu_512nodes (Dense)	(None,	512)
relu_128nodes (Dense)	(None,	128)
relu_32nodes (Dense)	(None,	32)
output (Dense)	(None,	1)
	=======	

