МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ЯДЕРНЫЙ УНИВЕРСИТЕТ «МИФИ» (НИЯУ МИФИ)

ИНСТИТУТ ЯДЕРНОЙ ФИЗИКИ И ТЕХНОЛОГИЙ КАФЕДРА №40 «ФИЗИКА ЭЛЕМЕНТАРНЫХ ЧАСТИЦ»

На правах рукописи

НЕКРАСОВА ЕВГЕНИЯ АЛЕКСЕЕВНА

ИССЛЕДОВАНИЕ ФЛУКТУАЦИЙ ЧИСЛА НЕЙТРАЛЬНЫХ И ЗАРЯЖЕННЫХ ПИОНОВ В pp, p–Pb и Pb–Pb СТОЛКНОВЕНИЯХ В ЭКСПЕРИМЕНТЕ ALICE

Направление подготовки 14.04.02 «Ядерная физика и технологии» Диссертация на соискание степени магистра

Научный руководитель, к.ф.-м.н.

_____Д. Ю. Пересунько

Москва2021

ВЫПУСКНАЯ КВАЛИФИКАЦИОННАЯ РАБОТА МАГИСТРА

ИССЛЕДОВАНИЕ ФЛУКТУАЦИЙ ЧИСЛА НЕЙТРАЛЬНЫХ И ЗАРЯЖЕННЫХ ПИОНОВ В pp, p–Pb и Pb–Pb СТОЛКНОВЕНИЯХ В ЭКСПЕРИМЕНТЕ ALICE

Студент	Е. А. Некрасова
Научный руководитель,	
к.фм.н.	Д. Ю. Пересунько
Рецензент,	
к.фм.н., доц.	И. Г. Алцыбеев
Секретарь ГЭК,	
к.фм.н.	А. А. Кириллов
Зав. каф. №40,	
д.фм.н., проф.	М. Д. Скорохватов
Рук. учеб. прог.,	
д.фм.н., проф.	М. Д. Скорохватов

ОГЛАВЛЕНИЕ

B	ведеі	ние	4
1	Экс	сперимент ALICE	7
	1.1	Общая информация	7
	1.2	Реконструкция фотонов	8
	1.3	Реконструкция и идентификация заряженных адронов	10
	1.4	Анализированные данные	11
		1.4.1 Критерии отбора заряженных треков	13
		1.4.2 Критерии отбора фотонных кластеров	13
2	Изм	иерение величины флуктуаций	14
	2.1	Связь между числом фотонов и нейтральных пионов	15
	2.2	Поправка на флуктуацию числа реконструированных фотонов	17
3 Оценка чувствительности $ u_{dyn}$ к образованию кирального к			
	ден	сата	24
4	Вли	ияние различных факторов на величину $ u_{dyn}$	26
	4.1	Влияние аксептанса детектора	26
		4.1.1 Зависимость от диапазона по ϕ	26
		4.1.2 Зависимость от диапазона по псевдобыстроте	27
	4.2	Результаты	29
Зa	клю	учение	32
Ст	исо	к литературы	33

ВВЕДЕНИЕ

Систематическое измерение величины флуктуаций числа частиц в pp, pA и AA столкновениях открывает возможности для исследования целого ряда эффектов:

- Поиски критической точки КХД. При приближении любой термодинамической системы к критической точке величина флуктуаций в ней резко увеличивается. Предполагается, что если в процессе эволюции горячей материи, рожденной в ядро-ядерном столкновении, она пройдет близко к критической точке, то увеличение флуктуаций различных наблюдаемых может сохраниться до конечного этапа столкновения и проявиться в характеристиках конечных частиц. Этот эффект предлагается использовать для поиска критической точки КХД в ядро-ядерных столкновениях, варьируя энергию столкновения и тип сталкивающихся частиц, исследуя таким образом различные пути эволюции системы [1].
- Образование дезориентированного кирального конденсата (disoriented chiral condensate). В случае восстановления киральной симметрии в ядро-ядреных столкновениях и затем быстрого охлаждения горячего вещества могут образоваться домены с ненормальной величиной кирального конденсата, что приводит, в частности, к отклонениям в величине отношения числа нейтральных к числу заряженных пионов [2].
- Образование Бозе-Эйнштейновского конденсата пионов в pp столкновениях высокой множественности [3].

В настоящее время фазовая диаграмма Квантовой Хромодинамики (КХД) качественно представляется следующим образом, см. рис. 1. Она содержит две линии фазового перехода первого рода: жидкость-газ при маленьких температурах и барионных хим. потенциалах порядка 300 МэВ, и линия перехода адронный газ – кварк-глюонная плазма при больших температурах $T \sim 150$ МэВ. Предполагается, что в ядро-ядерных столкновениях при энергиях $\sqrt{s_{\rm NN}} \sim 10 - 100$ ГэВ образуется горячее вещество с температурой несколько выше или порядка ожидаемой температуры фазового перехода. Далее система расширя-

Рисунок 1 — фазовая диаграмма КХД.

ется и остывает, проходя по некоторой кривой в плоскости $(T, \mu_{\rm B})$. Если эта кривая пройдет достаточно близко к критической точке, можно ожидать значительно увеличения величины флуктуация большинства наблюдаемых.

Фазовый переход от адронной матери к кварк-глюонной плазме может сопровождаться киральным фазовым переходом наряду с переходом к деконфайменту. Предсказано, что киральный фазовый переход может привести к появлению аномальных флуктуаций. Конкретное проявление этого перехода от киральной симметричной фазы (высокотемпературная) к нарушенной фазе (низкотемпературная) связано с образованием дезориентированного кирального конденсата (DCC) [2; 4]. Теоретические исследования образования и распада DCC обычно формулируются в контексте SU(2)-симметрии. Предполагается, что образование и распад DCC будет проявляться в виде увеличения флуктуаций соотношения множественностей адронов, входящих в изоспиновый мультиплет, в частности, его можно наблюдать как увеличение флуктуаций относительных выходов нейтральных и заряженных пионов [5—8]. DCC был также использован для объяснения увеличенного отношения выхода Ω и $\overline{\Omega}$ барионов, наблюдаемого при Pb–Pb столкновениях с энергией 17 ГэВ, измеренных на SPS CERN [9]. Гэвин и Капуста утверждали, что такие отклонения в величине флуктуаций удобно наблюдать для нейтральных и заряженных пионов и выражать

колличественно с помощью наблюдаемой ν_{dyn} [10—13]. В частности, они предсказали, что производство больших доменов DCC в центральных ядро-ядерных столкновениях может привести к аномальной зависимости ν_{dyn} от центральности столкновений.

Возможность образования Бозе-Эйнштейновского конденсата (БЭК) в рр столкновениях высокой множественности рассматривалось в ряде работ [14-20]. В этих работах образование БЭК связывалось с увеличением выхода мягких пионов. Однако, такое превышение может быть объяснено и другими эффектами (распады резонансов, Бозе-Эйнштейновские корреляции) и поэтому твердого подтверждения наблюдения БЭК в эксперименте до сих пор не получено. В работах [3; 21] было предложено другое проявление образования БЭК: увеличение величины флуктуаций числа пионов. В эксперименте SVD-2 на ускорителе U-70 в ИФВЭ была измерена зависимость величины относительной дисперсии числа пионов как функция множественности столкновения [22]. Был обнаружен ее рост с множественностью, не наблюдаемый в Монте-Карло моделировании. Однако, относительная дисперсия – величина, чувствительная к флуктуациями числа источников (объемных флуктуаций) в столкновении, и именно с этим может быть связан ее рост. В данной работе мы анализируем данные рр столкновений при энергиях БАК и используем сильноинтенсивную переменную < N_s > ν_{dyn} [23]. Преимущества новой переменной заключаются в том, что в рамках моделей с независимыми источниками она не зависит от флуктуаций числа источников и от эффективности регистрации, при условии, что эффективность постоянна в рассматриваемой кинематической области.

1. ЭКСПЕРИМЕНТ ALICE

1.1. ОБЩАЯ ИНФОРМАЦИЯ

ALICE - один из четырех наиболее крупных экспериментов на Большом адронном коллайдере (LHC) в ЦЕРН, Женева [24; 25]. Он предназначен для изучения физики сильно взаимодействующей материи при экстремальных плотностях энергии, где образуется фаза вещества, называемая кварк-глюонной плазмой.

Структура эксперимента ALICE показана на рис. 1.1. Он состоит из центрального барреля ($|\eta| \leq 0.9$), содержащего основные детекторы трекинга и идентификации частиц, мюонного спектрометра, расположенного в области передних быстрот, и детекторов, предназначенных для задания триггеров столкновения, измерения множественности, определения центральности и т.д.

Рисунок 1.1 — Установка эксперимента ALICE

Специфика детектора ALICE заключается в его способности обработать AA столкновения с высокой множественностью (десятки тысяч конечных частиц), способности регистрировать мягкие частицы с импульсами вплоть до 100 MэB/c и хорошей идентификации частиц. Регистрация мягких частиц достигается за счет использования сравнительно слабого магнитного поля 0.5 Тл, а для идентификации частиц используются все известные методы: по удельной потери энергии, времени пролета, Черенковскому излучению и с помощью детектора переходного излучения.

В дальнейшем нас будут интересовать флуктуации числа фотонов и заряженных идентифицированных пионов.

Результаты, представленные ниже, были получены с использованием метода идентификации (PID) [26], который позволяет рассчитывать моменты идентифицированного распределения множественности частиц, даже когда идентификация частиц выполняется на статистической основе. Для начала из больпой выборки событий получают полное распределение удельной потери энергии (dE/dx). Это позволяет с высокой точностью определять вероятность того, что данный трек соответствует конкретному виду частиц. Каждому треку присваивается вес $w_{\pi,K,p,e}$ между 0 и 1, который соответствует вероятности того, что частица является пионом, каоном, протоном или электроном соответственно. Затем вычисляется сумма весов всех треков в конкретном событии, $W_{\pi,K,p,e} = \sum w_{\pi,K,p,e}$ и получаются распределения $W_{\pi,K,p,e}$. После чего PID обеспечивает математический формализм для получения из моментов распределений $W_{\pi,K,p,e}$ моменты $\langle N_{\pi,K,p,e} \rangle$.

1.2. РЕКОНСТРУКЦИЯ ФОТОНОВ

Реконструкция фотонов в эксперименте ALICE может осуществляться несколькими способами: с использованием грубого электромагнитного калориметра EMCAL, фотонного спектрометра PHOS и метода фотонной конверсии (PCM).

Электромагнитный калориметр EMCAL предназначен в первую очередь для измерения электромагнитной компоненты струй. Поэтому он имеет большую гранулярность (размер ячейки 5.5×5.5 см², установленных на расстоянии 430 см от точки столкновения). Кроме того, он обладает сравнительно плохим энергетическим разрешением. Все это делает его неподходящим для измерения одиночных фотонов при малых поперечных импульсах, особенно в AA столкновениях.

РНОЅ - высокогранулярный прецизионный электромагнитный калориметр на основе кристаллов PbWO₄, охватывающий $|\eta| < 0.13$ и 260° $< \phi < 320°$. Детектор состоит из четырех модулей, установленных на радиальном расстоянии 460 см от точки взаимодействия ALICE. Из них три модуля состоят из $56 \times 64 = 3584$ сцинтилляционных кристаллов PbWO₄ с поперечным размером 2.2×2.2 см², а четвертый модуль содержит $56 \times 32 = 2600$ кристаллов. Каждый полный модуль покрывает азимутальный угол 20°.

Детектор PHOS оборудован детектором заряженных частиц (CPV) для идентификации фотонов посредством подавления загрязнения заряженными частицами. CPV представляет собой набор пропорциональных камер со считыванием катодной площадки, установленных перед модулями PHOS, покрывает $|\eta| < 0.12$ и имеет диапазон 60° по азимутальному углу.

Рисунок 1.2 — Схематическое сечение детектора ALICE перпендикулярно направлению луча. Видно расположение детекторов PHOS и TPC

В методе РСМ используются пары e^+e^- , образовавшиеся в результате конверсии фотонов на материале внутренних детекторов и реконструированные по заряженным трекам, измеряемым во внутренней трекинговой системе (ITS) и время-проекционной камере (TPC). Из-за малого количества материала во внутренних детекторах вероятность конверсии фотонов мала ~ 8%.

1.3. РЕКОНСТРУКЦИЯ И ИДЕНТИФИКАЦИЯ ЗАРЯЖЕННЫХ АДРОНОВ

Реконструкция заряженных адронов производилось в диапазоне $|\eta| < 0.8$ и полном азимутальном угле с помощью внутренней трекинговой системы (ITS) и времяпролетной камеры TPC. Их идентификация основана на удельных энергетических потерях в детекторе TPC (рис. 1.3).

Рисунок 1.3 — Схематический вид детектора ТРС

Внутренняя трекинговая система состоит из шести слоев кремниевых детекторов, расположена непосредственно вокруг точки взаимодействия и охватывает полный азимутальный угол. Два самых внутренних слоя состоят из кремниевых пиксельных детекторов (SPD), расположенных на радиальных рас-

Рисунок 1.4 — Удельная потеря энергии dE/dx в TPC в зависимости от импульса частицы для разных типов частиц. Линиями показаны параметризации кривых Бете-Блоха для разных типов частиц.

стояниях 3.9 см и 7.6 см, за которыми следуют два слоя кремниевых дрейфовых детекторов (SDD) на расстоянии 15.0 см и 23.9 см и два слоя кремниевых стриповых детекторов (SSD) на 38.0 см и 43.0 см. Два слоя SPD покрывают $|\eta| < 2$ и $|\eta| < 1.4$, соответственно, SDD и SSD - $|\eta| < 0, 9$ и $|\eta| < 1, 0$.

ТРС - это большой (85 м³) цилиндрический дрейфовый детектор, заполненный газовой смесью Ne/CO₂ (90/10%). Он охватывает $|\eta| < 0.9$ по полному азимутальному углу, с максимумом в 159 реконструированных пространственных точек вдоль трека. ТРС обеспечивает идентификацию частиц посредством измерения удельной потери энергии (dE/dx) с разрешением 5,5%, см рис. 1.4. Как видно из рисунка, такое разрешение позволяет надежно разделять пионы и другие адроны до импульсов $p_{\rm T} \sim 1 \ \Gamma$ эB/c.

1.4. АНАЛИЗИРОВАННЫЕ ДАННЫЕ

В данном анализе рассматривались pp, p-Pb и Pb-Pb столкновения при энерги
и $\sqrt{s_{\rm NN}}=5.02$ ТэВ.

Данные pp столкновений при энергии $\sqrt{s} = 5.02$ ТэВ были получены экспериментом ALICE в сеансе 2017 года (период LHC17p, LHC17q в номенклатуре эксперимента ALICE). Были проанализированы $80 \cdot 10^6$ событий, соответствующих критерию Minimum Bias: совпадению сигналов в детекторах V0A и V0C и пересечению банчей в коллайдере. Для дальнейшего анализа отбирались события с z координатой первичной вершины, отклоняющейся не более чем на 10 см от номинальной точки взаимодействия. Также отбрасывались события, в которых детектор SPD фиксировал несколько первичных вершин, что соответствует наложению нескольких pp взаимодействий внутри одного столкновения банчей. Класс множественности столкновения определялся по сигналу детекторов V0A и V0C.

Для сравнения рассматривались данные, полученных методом Монте-Карло моделирования. Для pp столкновений использовалось моделирование с помощью генератора событий Pythia8 [27] (период LHC17l4 в номенклатуре эксперимента ALICE) и реконструированные в той же конфигурации детектора, что и полученые данные.

Для анализа p–Pb столкновений при энергии $\sqrt{s_{\rm NN}} = 5.02$ ТэВ использовались данные, полученные экспериментом ALICE в сеансе 16 года (период LHC16q, LHC16r по классификации ALICE). Так же, как и в случае pp столкновений, для дальнейшего анализа отбирались события с z координатой первичной вершины, отклоняющейся не более чем на 10 см от номинальной точки взаимодействия. Также отбрасывались события, в которых детектор SPD фиксировал несколько первичных вершин, что соответствует наложению нескольких парных взаимодействий внутри одного столкновения банчей. Было проанализировано $25 \cdot 10^7$ событий. Центральность столкновения определялась по сигналу детекторов V0A и V0C. Для сравнения использовались результаты моделирования с генератором DPMJET [28] и конфигурацией детектора, соответствующей оной при наборе данных (период LHC17f2b по классификации ALICE).

Данные по столкновениям Pb–Pb были получены экспериментом ALICE в сеансе 2015 года (период LHC150 по классификации ALICE). Так же как и в случае pp и p–Pb столкновений отбирались события с z координатой первичной вершины, отклоняющейся не более чем на 10 см от номинальной точки взаимодействия и отбрасывались события с несколькими первичными вершинами. Центральность столкновения определялась по сигналу детекторов V0A и V0C. Всего было проанализировано $5 \cdot 10^7$ событий после отбора. Для сравнения использовались результаты моделирования с генератором Hijing [29] и конфигурацией детектора, соответствующей оной при наборе данных (периоды LHC16g1a, LHC16g1b, LHC16g1c по классификации ALICE).

1.4.1. КРИТЕРИИ ОТБОРА ЗАРЯЖЕННЫХ ТРЕКОВ

Для реконструкции треков заряженных пионов использовались следующие условия: трек должен быть реконструирован в TPC и продолжен в детекторе ITS (условие AliAODTrack::IsHybridGlobalConstrainedGlobal() в AliRoot); поперечный импульс больше 100 МэВ/c; диапазон псевдобыстрот $\eta < 0.8$; удельное энерговыделение в TPC не далее чем в 3σ от параметризации пионной линии и ближе к пионной линии чем к каонной или протонной.

1.4.2. КРИТЕРИИ ОТБОРА ФОТОННЫХ КЛАСТЕРОВ

Для дальнейшего анализа фотонов отбирались кластеры в детекторе PHOS, удовлетворяющие следующим условиям: энергия кластера больше 100 МэВ; время прилета $-30 \cdot 10^{-9} < t - t_{exp} < 30 \cdot 10^{-9}$ с от ожидаемого времени прилета фотона; дисперсия кластера отличается менее чем на 2.5σ от ожидаемой формы электромагнитного кластера; расстояние до ближайшей экстраполяции трека до поверхности PHOS не менее 2.5σ , что позволяет уменьшить загрязнение заряженными кластерами.

2. ИЗМЕРЕНИЕ ВЕЛИЧИНЫ ФЛУКТУАЦИЙ

Для оценки величины флуктуаций к настоящему моменту предложено большое количество различных статистических наблюдаемых. В данной работе рассмотрена динамическая переменная ν_{dyn} [13]:

$$\nu_{\rm dyn}(1,2) = \frac{\langle N_1(N_1-1)\rangle}{\langle N_1\rangle^2} + \frac{\langle N_2(N_2-1)\rangle}{\langle N_2\rangle^2} - 2\frac{\langle N_1N_2\rangle}{\langle N_1\rangle\langle N_2\rangle},\tag{2.1}$$

где N_1 и N_2 - число частиц сортов 1 и 2 на событие, а треугольными скобками обозначено усреднение по событиям.

Преимущество данной переменной в том, что в ней сокращается зависимость от эффективности регистрации частиц. В случае независимых пуассоновских распределений обеих частиц динамическая переменная обращается в ноль [30]. В противном случае можно сделать вывод о некоторой статистической зависимости между рассматриваемыми величинами, причём при отрицательных значениях переменной имеет место корреляция, а при положительных — антикорреляция между частицами.

Величина ν_{dyn} оказывается обратно пропорциональна числу независимых "источников" в столкновении, которые можно представить как независимые нуклон-нуклонные столкновения. Обратное число источников можно оценить как $\alpha = (\langle N_1 \rangle^{-1} + \langle N_2 \rangle^{-1})$, поэтому далее при построении зависимостей от центральности (множественности) столкновений мы будем использовать переменную ν_{dyn}/α [23]. Такая переменная является сильноинтенсивной, т.е., в модели независимых источников, независимой от числа источников, а также и от флуктуаций этого числа.

2.1. СВЯЗЬ МЕЖДУ ЧИСЛОМ ФОТОНОВ И НЕЙТРАЛЬНЫХ ПИОНОВ

Подавляющее большинство фотонов, регистрируемых в pp, p–Pb или Pb– Pb столкновениях, рождаются в распадах нейтральных пионов. Пример оценки относительного вклада в спектр конечных фотонов в pp столкновении при энергии 8 ТэВ, взятый из работы [31], показан на рис. 2.1. Как видно, при малых поперечных импульсах $p_T < 1$ ГэВ/с, наиболее интересных для нашего анализа, вклад нейтральных пионов оказывается выше 90-95%. Таким образом, флуктуация в числе фотонов будет отражать флуктуацию в числе нейтральных пионов.

Рисунок 2.1 — Относительный вклад адронов в спектр конечных фотонов в столкновении pp при энергии 8 ТэВ [31].

Однако, использование флуктуаций фотонов в качестве оценки величины флуктуаций π^0 приводит к некоторым усложнениям: детектор с конечным аксептансом может зарегистрировать ни одного, один или два дочерних фотона от распада каждого пиона. Более того, хотя средние вероятности регистрации могут быть вычислены с помощью Монте-Карло моделирования, но переменная ν_{dyn} также чувствительна к флуктуациям этих чисел. В следующей главе мы покажем, как вычислить величину пионных флуктуаций по фотонным.

2.2. ПОПРАВКА НА ФЛУКТУАЦИЮ ЧИСЛА РЕКОНСТРУИРОВАННЫХ ФОТОНОВ

Чтобы проверить принципиальную возможность измерения величины флуктуаций числа нейтральных пионов по величине флуктуаций числа фотонов в данной главе использовались данные, полученные на генераторном уровне моделирования методом Монте-Карло.

Рисунок 2.2 — Зависимость от класса множественности событий ν_{dyn}/α нейтральных и заряженных пионов и фотонов и заряженных пионов на генераторном уровне моделирования методом Монте-Карло

На рис. 2.2 представлена зависимость динамической переменной нейтральных и заряженных пионов (красные круги), всех фотонов в событии и заряженных пионов (зелёные квадраты) и учитывая только один фотон из пары распадных и заряженные пионы (голубые квадраты) от класса множественности. В случае, когда из пары фотонов, образовавшихся в результате распада π^0 мезона, один отбрасывается, поведение динамической переменной не отличается от пары заряженный π -мезон – нейтральный π -мезон, однако добавление второго фотона из пары значительно искажает динамическую переменную. Таким образом, для оценки величины корреляции нейтральных и заряженных пионов необходимо учесть вероятности зарегистрировать ни одного, один или два дочерних фотона от распада каждого пиона и их флуктуации от пиона к пиону.

Отличие ν_{dyn}/α для всех фотонов и одного из пары связано с тем, что в конечный аксептанс может попасть различное количество распадных фотонов. При этом нужно учитывать, что доля попавших фотонов может флуктуировать от события к событию. Чтобы учесть искажение переменной, связанное с распадом одной частицы на две, мы ввели поправку, полученную следующим образом. Пусть при распаде $\pi^0 \rightarrow 2\gamma$ в выбранном аксептансе есть вероятность α зарегистрировать только один фотон и вероятность β зарегистрировать оба фотона. Тогда вероятность зарегистрировать п фотонов при распаде N пионов будет описываться мультиномиальным распределением:

$$P(n = n_1 + 2n_2) = P(N) \frac{N!}{n_1! n_2! (N - n_1 - n_2)!} \alpha^{n_1} \beta^{n_2} (1 - \alpha - \beta)^{N - n_1 - n_2}$$
(2.2)

где N - полное число π^0 , n_1 - число π^0 , от которых был зарегистрирован 1 фотон, а n_2 - число π^0 , от которых были зарегистрированы два фотона. Не вводя никаких предположений о распределении P(N), можно связать среднее число фотонов и среднее число пионов:

$$\langle n \rangle = \sum_{N=1}^{\infty} P(N) \sum_{n_1=0}^{N} \sum_{n_2=0}^{N-n_1} \frac{N!(n_1+2n_2)}{n_1! n_2! (N-n_1-n_2)!} \alpha^{n_1} \beta^{n_2} (1-\alpha-\beta)^{N-n_1-n_2}$$

= $(\alpha+2\beta) \langle N \rangle$ (2.3)

и второй ингредиент

$$\langle n(n-1) \rangle = \sum_{N=1}^{\infty} P(N) \sum_{n_1=0}^{N} \sum_{n_2=0}^{N-n_1} \frac{N!(n_1+2n_2)(n_1+2n_2-1)}{n_1!n_2!(N-n_1-n_2)!} \times \alpha^{n_1} \beta^{n_2} (1-\alpha-\beta)^{N-n_1-n_2} = (\alpha+2\beta)^2 \langle N(N-1) \rangle + 2\beta \langle N \rangle$$
 (2.4)

Вычислив динамическую переменную с учётом этих результатов, получим:

$$\nu_{dyn}(\pi^0, \pi^{\pm}) = \frac{\langle N_{\gamma}(N_{\gamma} - 1) \rangle}{\langle N_{\gamma} \rangle^2} + \frac{\langle N_{\pm}(N_{\pm} - 1) \rangle}{\langle N_{\pm} \rangle^2} - 2\frac{\langle N_{\gamma}N_{\pm} \rangle}{\langle N_{\gamma} \rangle \langle N_{\pm} \rangle} - \frac{2\beta}{(\alpha + 2\beta)} \frac{1}{\langle N_{\gamma} \rangle}$$
(2.5)

Далее была построена скорректированная динамическая переменная ν_{dyn}^* на генераторном уровне моделирования методом Монте-Карло, коэффициент $\beta/(\alpha + 2\beta)$ вычислен из соотношения числа одиночных фотонов к числу пар фотонов, известного на генераторном уровне моделирования (рис.2.3).

Рисунок 2.3 — Зависимость от класса множественности событий ν_{dyn}/α нейтральных и заряженных пионов и фотонов и заряженных пионов на генераторном уровне моделирования методом Монте-Карло с поправкой на парное рождение фотонов

Скорректированная динамическая переменная от фотонов и заряженных пионов на рис.2.3 изображена желтыми треугольниками, остальные обозначения совпадают с рис.2.2. Видно, что скорректированная динамическая переменная от фотонов и заряженных пионов довольно точно повторяет поведение динамической переменной нейтральных и заряженных пионов, что свидетельствует о правильности введённой коррекции.

В реальных данных невозможно однозначно сказать, родился ли данный фотон при распаде π^0 мезона и, если да, попал ли его партнёр в детектор,

однако возможно с помощью спектра инвариантных масс пар фотонов оценить число зарегистрированных пар от распада π^0 , и отношение числа таких пар к полному числу фотонов, т.е. $\beta/(\alpha + 2\beta)$. Пример такого спектра инвариантных масс показан на рис. 2.4.

Рисунок 2.4 — Пример спектра инвариантных масс двух фотонов в pp столкновениях и импульсах фотонов в диапазоне $0.8 < p_T < 1 \ \Gamma \Rightarrow B/c$. Вверху слева: "real"и "mixed"pacnpedeneura. Вверху справа: их отношение. Внизу: пик нейтральных пионов после вычитания фона.

Вычисление числа пар фотонов от распада π^0 технически совпадает с процедурой подсчета числа π^0 : в процессе сканирования данных в каждом событии строится спектр инвариантных масс всех возможных пар фотонов, при этом получается плавное распределение - комбинаторный фон случайных пар и гауссов пик в районе массы π^0 мезона, вклад в который вносят пары фотонов, рождённых в результате распада π^0 мезона; такой спектр называется real (синие точки на верхнем левом изображении рис. 2.4. Одновременно с этим строится спектр инвариантных масс пар фотонов, принадлежащих различным событиям - mixed. Поскольку в mixed нет пар фотонов, родившихся в результате распада одного π^0 мезона, он представляет собой чистый комбинаторный фон. Далее строится отношение real/mixed (рис.2.4 правое изображение), получившийся спектр фитируется суммой гаусса и полинома первой степени. Mixed умножается на получившийся полином и вычитается из real. Получившийся в результате спектр показывает число пар фотонов, родившихся в результате распада π^0 мезонов во всех событиях в данном классе множественности (нижнее изображение рис.2.4).

Для каждого диапазона поперечных импульсов и класса центральности был построен такой спектр и вычислено число пар фотонов в пике нейтральных пионов. Отношение числа пар к полному числу зарегистрированных фотонов позволяет вычислить отношение $\beta/(\alpha + 2\beta)$.

На рис. 2.5 представлены результаты моделирования методом Монте-Карло на генераторном уровне и на этапе реконструкции, коэффициент $\beta/(\alpha+2\beta)$ для реконструированных фотонов был вычислен методом инвариантных масс. Наблюдается хорошее совпадение скорректированной динамической переменной фотонов (красные треугольники в верхней части изображения) на этапе реконструкции с динамической переменной одиночных фотонов, что свидетельствует о правильности введённой коррекции. На нижней части рисунка представлено отношение скорректированной динамической переменной к динамической переменной одиночных фотонов на генераторном уровне Монте-Карло моделирования. В пределах ошибок точки согласуются с единицей (синяя прямая). Фит отношения константой (красная прямая) дает 0.70 + / - 0.08, что связана, повидимому, с выпрыгнувшей точкой с множественность 40-45%. Требуется скан дополнительных Монте-Карло данных для улучшения точности.

Аналогичным образом поправка была проверена для pPb и PbPb столкновений в моделировании методом Монте-Карло, рис.2.6.

На левой части рис. 2.6 показана коррекция динамической переменной методом инвариантных масс для pPb столкновений. Можно видеть, что в рамках имеющихся погрешностей, поправка работает, и скорректированная переменная ν_{dyn} довольно точно совпадает с переменной от одиночных фотонов, фит отношения константой (красная прямая) даёт 1.1 + / - 0.1.

На правой части рис. 2.6 изображена зависимость ν_{dyn} от класса мно-

Рисунок 2.5 — Зависимость ν_{dyn}/α фотонов и заряженных пионов на разных этапах моделирования методом Монте-Карло от класса множественности событий. Синяя линия на нижнем рисунке проведена на уровне 1. Красная линия - фит константой, которая дает 0.70 + / - 0.08

жественности событий в Pb–Pb столкновениях. Для этой системы поведение скорректированной переменной ν_{dyn}/α не воспроизводит поведение переменной от одиночных фотонов на генераторном уровне моделирования методом Монте-Карло. В то же время, для Pb–Pb столкновений так же не совпадают ν_{dyn}/α от одиночных фотонов на генераторном уровне моделирования и построенные с использованием реконструированных фотонов. Отличие сильнее проявляется в центральных столкновениях, так что причина, вероятно, связана с наложением кластеров в событиях с высокой множественностью. Этот эффект требует дальнейшего исследования, а в настоящее время мы сосредоточимся на pp и p–Pb столкновениях.

Рисунок 2.6 — Зависимость ν_{dyn}/α фотонов и заряженных пионов на разных этапах моделирования методом Монте-Карло от класса множественности событий в pPb и PbPb столкновениях

3. ОЦЕНКА ЧУВСТВИТЕЛЬНОСТИ ν_{DYN} К ОБРАЗОВАНИЮ КИРАЛЬНОГО КОНДЕНСАТА

Прежде чем приступать к анализу данных, необходимо понять, насколько динамическая переменная чувствительна к появлению нового сигнала. Для этого была использована простейшая модель образования кирального конденсата. Для моделирования событий был использован генератор Pythia8 [27], но при этом предполагалось, что в каждом событии образуется область, в которой изоспиновая симметрия сильно нарушена и все заряженные пионы становятся нейтральными. При этом размер области по псевдобыстроте η не менялся от события к событию, а её расположение выбиралось случайно в пределах $-4 < \eta < 4$.

condensate influence

Рисунок 3.1 — Величина динамической переменной в зависимости от аксептанса детектора $|\eta_{detector}|$ при разных размерах по η области образования конденсата.

На рис.3.1 показана зависимость величины динамической переменной от аксептанса детектора $|\eta_{detector}|$ для случая, когда размер области с нарушенной изоспиновой симметрией $\Delta \eta = 0.1$ - синие квадраты, $\Delta \eta = 0.2$ - жёлтые круги и для случая без аномальной области - зелёные треугольники. Как и ожидалось, отличие максимально когда динамическая переменная измеряется в области меньшей или сравнимой с размером аномальной области. В этом случае значение ν_{dyn} увеличивается на 20-30%. Отметим, что такая оценка сильно завышена, так как в более реалистичной модели отклонение от изоспиновой симметрии будут значительно меньше, размеры аномальной области будет флуктуировать от события к событию, появится зависимость от азимутального угла ит.д. Поэтому можно ожидать отклонения в 10-100 раз меньшего, чем получено в нашей простой модели.

4. ВЛИЯНИЕ РАЗЛИЧНЫХ ФАКТОРОВ НА ВЕЛИЧИНУ ν_{DYN}

4.1. ВЛИЯНИЕ АКСЕПТАНСА ДЕТЕКТОРА

Ограниченность аксептанса детектора может влиять на величину переменной ν_{dyn} , т.к. в него может попадать различное число дочерних частиц от распадов резонансов, входящих в состав струй или скоррелированных какнибудь иначе. В нашем анализе фотоны могут быть зарегистрированы только в аксептансе детектора PHOS, который составляет $|\eta| < 0, 13$ и $260^{\circ} < \phi < 320^{\circ}$, в то же время как трековая система позволяет регистрировать заряженные пионы в диапазоне псевдобыстроты в пределах $|\eta| < 0.8$ и полном азимутальном угле. Таким образом сначала необходимо определить диапазон отбора заряженных пионов, минимизирующий переменную ν_{dyn} .

Для того, чтобы выбрать оптимальный диапазон отбора заряженных пионов, было рассмотрено поведение динамической переменной в зависимости от различных кинематических переменных.

4.1.1. ЗАВИСИМОСТЬ ОТ ДИАПАЗОНА ПО ϕ

Зависимость динамической переменной от диапазона по ϕ при разных катах на π^0 и π^{\pm} представлена на рис. 4.1. Случай, когда нейтральные и заряженные пионы отбирались в одном диапазоне по ϕ показан красными кругами, синие квадраты соответствуют отбору π^{\pm} во всём диапазоне по углу, кроме того, в котором регистрировались π^0 , фиолетовые треугольники показывают зависимость при отборе нейтральных и заряженных пионов в противоположных направлениях. Для того, чтобы увеличить статистику и оценить величину флуктуаций, рассматривалось одновременно 4 версии PHOS, повернутые друг относительно друга на 90° - это соответствует 4 точкам на каждой кривой. При этом соответствующим образом изменялись отборы заряженных пионов.

Рисунок 4.1 — Зависимость переменной ν_{dyn} от диапазона по ϕ при разных видах отбора по ϕ на π^0 и π^{\pm} для различных диапазонах p_T

Из рис.4.1 видно, что во всех диапазонах по p_T динамическая переменная ν_{dyn} принимает наименьшее значение при отборе π^0 и π^{\pm} в одном и том же диапазоне по азимутальному углу. Соответственно, для дальнейшего анализа стоит также отбирать заряженные пионы в том же диапазоне по ϕ , в котором регистрируются нейтральные.

4.1.2. ЗАВИСИМОСТЬ ОТ ДИАПАЗОНА ПО ПСЕВДОБЫСТРОТЕ

Аналогичным образом была проанализирована зависимость переменной ν_{dyn} от диапазона по псевдобыстроте. На всех изображениях рис.4.2 нейтральные пионы отбирались в диапазоне $|\eta|$, отложенном по горизонтальной оси, отбор заряженных пионов производился в том же диапазоне, что и нейтральных пионов (красные кружки), в интеграле от 0 до правого края текущего бина по горизонтальной оси (синие квадраты), без ограничений по псевдобыстроте (зелёные треугольники) и в диапазоне $0.8 < |\eta| < 1$ (розовые треугольники).

27

Рисунок 4.2 — Зависимость переменной ν_{dyn} от диапазона по псевдобыстроте для различных p_T при разных видах отборов π^{\pm}

Наиболее точно аксептансу детектора PHOS псевдобыстроте ($|\eta| < 0.12$) на рис.4.2 соответствует первый бин по горизонтальной оси. Можно видеть, что в этом бине для всех интервалов p_T наименьшее значение переменная ν_{dyn} принимает при отборе заряженных пионов в том же диапазоне псевдобыстроты, что и нейтральных, поэтому в дальнейшем заряженные пионы так же будут отбираться в аксептансе детектора PHOS.

4.2. РЕЗУЛЬТАТЫ

В этой главе мы сравним величину пионных флуктуаций в реальных данных и в Монте-Карло моделировании. Мы вычислили коррекцию на парное рождение фотонов для реальных и моделированных данных и сравнили их на рис. 4.3.

Рисунок 4.3 — Зависимость ν_{dyn}/α фотонов и заряженных пионов от класса множественности событий для данных и моделирования pp столкновений при энергии $\sqrt{s} = 5$ ТэВ для разных диапазонов поперечных импульсов.

В верхних частях рисунка зелёными ромбами показана динамическая переменная на реальных данных после коррекции на парное рождение, а голубыми квадратами обозначена переменная ν_{dyn}/α для одиночных фотонов, полученная на генераторном уровне моделирования методом Монте-Карло. При больших поперечных импульсах оба распределения согласуются друг с другом, но при уменьшении p_T различие между данными и Монте-Карло моделированием увеличивается. Это связано с увеличением загрязнения фотонного спектра с уменьшением p_T , см. рис. 4.4. При $p_T \sim 1 \ \Gamma \Rightarrow B/c$ загрязнение фотонного спектра составляет $\sim 5\%$, и увеличивается до $\sim 50\%$ при $p_T \sim 0.2 \ \Gamma \Rightarrow B/c$.

В нижней части рисунка показано отношение переменной ν_{dyn} на реальных данных после коррекции к динамической переменной одиночных фотонов на генераторном уровне моделирования методом Монте-Карло.

Рисунок 4.4 — Зависимость чистоты фотонного спектра и загрязнения от энергии кластера. Монте-Карло моделирование с помощью генератора Pythia8 и программы AliRoot.

На рис.4.5, показано сравнение скорректированных ν_{dyn}/α для столкновений p–Pb при энергии $\sqrt{s_{NN}} = 5.02$ ТэВ. В целом зависимости похожи на pp столкновения, но DPMJET предсказывает несколько большее значение для ν_{dyn}/α . Фит отношения константой дает 0.35 +/- 0.02.

Рисунок 4.5 — Зависимость ν_{dyn}/α фотонов и заряженных пионов от класса множественности событий для данных и моделирования pPb столкновений при энергии $\sqrt{s} = 5$ ТэВ для разных диапазонов поперечных импульсов.

ЗАКЛЮЧЕНИЕ

В данной работе проводилось исследование флуктуаций числа нейтральных и заряженных пионов в pp, p-Pb и Pb-Pb столкновениях в эксперименте ALICE с помощью переменной ν_{dyn} .

При условии реконструкции нейтральных пионов в детекторе PHOS был найден аксептанс регистрации заряженных пионов, минимизирующий переменную ν_{dyn} .

Был предложен метод восстановления флуктуаций нейтральных пионов по флуктуациям фотонов. Проверка предложенной коррекции на данных моделирования методом Монте-Карло показала, что введённая коррекция действительно позволяет оценить флуктуации π^0 по флуктуациям числа фотонов.

Была вычислена величина флуктуаций числа нейтральных и заряженных пионов в pp столкновениях при энергии $\sqrt{s} = 5$ ТэВ. Для сравнения та же величина была получена в Монте-Карло моделировании с помощью генератора Pythia8. При больших поперечных импульсах Pythia8 воспроизводит как абсолютную величину флуктуаций, так и их зависимость от множественности. Однако, при уменьшении энергии фотонов и пионов отличие увеличивается, что связано, по-видимому, с увеличением загрязнения фотонного спектра.

Аналогичный результат получен в случае p-Pb столкновений при энергии $\sqrt{s_{NN}} = 5$ ТэВ. Однако, оказалось, что генератор событий DPMJET предсказывает несколько большую величину ν_{dyn}/α .

Статистические погрешности измерений и Монте-Карло моделирования в настоящее время значительно больше возможного сигнала образования кирального конденсата или близости к критической точки.

СПИСОК ЛИТЕРАТУРЫ

- Luo X., Xu N. Search for the QCD Critical Point with Fluctuations of Conserved Quantities in Relativistic Heavy-Ion Collisions at RHIC : An Overview // Nucl. Sci. Tech. — 2017. — т. 28, № 8. — с. 112. — arXiv: 1701.02105 [nucl-ex].
- Pisarski R. D., Wilczek F. Remarks on the Chiral Phase Transition in Chromodynan Phys. Rev. — 1984. — т. D29. — с. 338—341.
- Begun V. V., Gorenstein M. I. Bose-Einstein condensation of pions in high multiplicity events // Phys. Lett. - 2007. - т. B653. - с. 190-195. - arXiv: hep-ph/0611043 [hep-ph].
- Rajagopal K., Wilczek F. Static and dynamic critical phenomena at a second order QCD phase transition // Nucl. Phys. — 1993. — т. ВЗ99. — с. 395— 425. — arXiv: hep-ph/9210253 [hep-ph].
- Blaizot J.-P., Krzywicki A. Soft pion emission in high-energy heavy ion collisions // Phys. Rev. — 1992. — т. D46. — с. 246—251.
- 6. *Hiro-Oka H., Minakata H.* Two pion correlations as a possible experimental probe for disoriented chiral condensates // Phys. Lett. 1998. т. B425. с. 129—134. arXiv: hep-ph/9712476 [hep-ph]; [Erratum: Phys. Lett.B434,461]
- Hiro-Oka H., Minakata H. Dynamical pion production via parametric resonance from disoriented chiral condensate // Phys. Rev. — 2000. — т. C61. — с. 044903. arXiv: hep-ph/9906301 [hep-ph].
- Kapusta J. I., Wong S. M. H. Is anomalous production of Omega and anti-Omega evidence for disoriented chiral condensates? // Phys. Rev. Lett. – 2001. — т. 86. — с. 4251—4254. — arXiv: nucl-th/0012006 [nucl-th].
- Kapusta J. I., Srivastava A. M. Baryon anti-baryon production by disordered chiral condensates // Phys. Rev. — 1995. — т. D52. — с. 2977—2981. — arXiv: hep-ph/9404356 [hep-ph].

- Gavin S., Kapusta J. I. Kaon and pion fluctuations from small disoriented chiral condensates // Phys. Rev. — 2002. — т. C65. — с. 054910. — arXiv: nucl-th/0112083 [nucl-th].
- Abdel-Aziz M., Gavin S. Strange fluctuations at RHIC // Nucl. Phys. 2003. — т. A715. — с. 657—660. — arXiv: nucl-th/0209019 [nucl-th]; — [J. Phys.G30,S271(2004)].
- Gavin S. Strange disoriented chiral condensate // 18th Winter Workshop on Nuclear Dynamics (WWND 2002) Nassau, Bahamas, January 20-22, 2002. – 2002. – arXiv: nucl-th/0204064 [nucl-th].
- Pruneau C., Gavin S., Voloshin S. Methods for the study of particle production fluctuations // Phys. Rev. — 2002. — т. C66. — с. 044904. — arXiv: nuclex/0204011 [nucl-ex].
- Zimanyi J., Fai G. I., Jakobsson B. BOSE-EINSTEIN CONDENSATION OF PIONS IN ENERGETIC HEAVY ION COLLISIONS? // Phys. Rev. Lett. – 1979. — т. 43. — с. 1705—1707.
- 15. Pion production and Bose enhancement effects in relativistic heavy ion collisions / I. N. Mishustin [и др.] // Phys. Lett. 1992. т. B276. с. 403—408.
- 16. Greiner C., Gong C., Muller B. Some remarks on pion condensation in relativistic heavy ion collisions // Phys. Lett. — 1993. — т. B316. — с. 226—230. — arXiv: hep-ph/9307336 [hep-ph].
- 17. *Pratt S.* Pion lasers from high-energy collisions // Phys. Lett. 1993. т. B301. с. 159—164.
- Bialas A., Zalewski K. Searching for cold spots in multi pion systems // Phys. Rev. - 1999. - т. D59. - с. 097502. - arXiv: hep-ph/9810545 [hep-ph].
- Sinyukov Y. M., Akkelin S. V., Lednicky R. Thermodynamics of multiboson phenomena // Correlations and fluctuations: From QCD to particle interferometry. Proceedings, 8th International Workshop on multiparticle production, CF'98, Matrahaza, Hungary, June 14-21, 1998. — 1998. — c. 66—73. — arXiv: nuclth/9909015 [nucl-th].
- 20. Multiboson effects in multiparticle production / R. Lednicky [и др.] // Phys. Rev. - 2000. - т. C61. - с. 034901. - arXiv: nucl-th/9911055 [nucl-th].

- 21. Begun V. V., Gorenstein M. I. Bose-Einstein Condensation in the Relativistic Pion Gas: Thermodynamic Limit and Finite Size Effects // Phys. Rev. – 2008. – т. C77. – с. 064903. – arXiv: 0802.3349 [hep-ph].
- 22. Kokoulina E. Evidence for a pion condensate formation in pp interactions at U-70 // PoS. 2013. т. ICHEP2012. с. 259. arXiv: 1307.7225 [hep-ex].
- 23. Collaboration A. Neutral to Charged Kaon Yield Fluctuations in Pb–Pb Collisions at sNN= 2.76 TeV. -2018.
- 24. Performance of the ALICE Experiment at the CERN LHC / В. В. Abelev [и др.] // Int. J. Mod. Phys. 2014. т. A29. с. 1430044. arXiv: 1402.4476 [nucl-ex].
- 25. Performance of the ALICE Experiment at the CERN LHC / В. В. Abelev [и др.] // Int. J. Mod. Phys. 2014. т. А29. с. 1430044. arXiv: 1402.4476 [nucl-ex].
- 26. Gorenstein M. I. Identity Method for Particle Number Fluctuations and Correlations Phys. Rev. — 2011. — т. C84. — с. 024902. — arXiv: 1106.4473 [nucl-th]; — [Erratum: Phys. Rev.C97,no.2,029903(2018)].
- 27. Lönnblad L. Modelling pp, pA and AA in Pythia8 // EPJ Web Conf. 2019. —
 т. 208. с. 11003.
- 28. Roesler S., Engel R., Ranft J. The Monte Carlo event generator DPMJET-III // Advanced Monte Carlo for radiation physics, particle transport simulation and applications. Proceedings, Conference, MC2000, Lisbon, Portugal, October 23-26, 2000. - 2000. - c. 1033-1038. - arXiv: hep-ph/0012252 [hep-ph].
- Deng W.-T., Wang X.-N., Xu R. Hadron production in p+p, p+Pb, and Pb+Pb collisions with the HIJING 2.0 model at energies available at the CERN Large Hadron Collider // Phys. Rev. — 2011. — т. C83. — с. 014915. — arXiv: 1008.1841 [hep-ph].
- 30. Christiansen P., Haslum E., Stenlund E. Number-ratio fluctuations in highenergy particle production // Phys. Rev. — 2009. — т. C80. — с. 034903. arXiv: 0902.4788 [hep-ex].

31. Direct photon production at low transverse momentum in proton-proton collisions at √s = 2.76 and 8TeV / S. Acharya [и др.] // Phys. Rev. - 2019. - т. С99, № 2. - с. 024912. - arXiv: 1803.09857 [nucl-ex].