Министерство науки и высшего образования Российской Федерации Федеральное государственное автономное образовательное учреждение высшего образования <<Национальный исследовательский ядерный университет <<МИФИ>>

ВЫПУСКНАЯ КВАЛИФИКАЦИОННАЯ РАБОТА НА ТЕМУ:

МОНТЕ-КАРЛО МОДЕЛИРОВАНИЕ ПОЗИТРОННОГО ТОМОГРАФА НА ОСНОВЕ СЦИНТИЛЛЯЦИОННЫХ КРИСТАЛЛОВ GAGG(Ce)

Научный руководитель к. ф.-м. н. Гробов А.В.

Выполнил студент группы М19-115 Левашко Н.М.

1

Москва 2021

Содержание

- Позитронно-эмиссионная томография
- Геометрия установки
- Кристалл GAGG(Ce)
- Процесс моделирования
- Алгоритмы отбора и восстановления позиции
- Полученные результаты

Позитронно-эмиссионная томография

Позитронно-эмиссионная томография - это метод медицинской визуализации, используемый для получения трехмерных изображений внутренних органов и частей тела испытуемых. Он основан на детектировании двух гамма-квантов с энергией 511 кэВ, испускаемых вследствие аннигиляции электрона с позитроном.

Рис.1 Процесс аннигиляции электрона и позитрона

Геометрия установки

Рис.2 Модель кольца детектора

- кристалл
 GAGG(Ce) 3x3x25 мм
- SiPM 3х3х1 мм
- водный цилиндр r= 10мм, h= 20мм

Кристалл GAGG(Ce)

Рис.3 Поглощенная энергия в кристалле

Рис.4 Сцинтилляция гамма-кванта в кристалле

Отдельно исследовались свойства данного кристалла. В частности эффективность регистрации в фотопике. Она составила 22.5 ± 1.5 %

Процесс моделирования

Рис. 5 Структура ROOT файла и записываемой в него информации

Рис.6 Смоделированное событие

Было смоделировано 4 набора данных:

- 5 миллионов событий с водным цилиндром, позиция источника - в центре установки
- 5 миллионов событий с водным цилиндром, позиция источника - 5. 5. 0.
 мм
- 1 миллион событий без водного цилиндра, позиция источника - в центре установки
- 1 миллион событий без водного цилиндра, позиция источника - 5. 5. 0.
 мм

Алгоритм отбора

Рис.7 Ограничения на взаимное расположение сработавших SiPM

В процессе анализа рассматривались следующие ограничения на отбор событий:

- число сработавших SiPM 2
- сработавшие кристаллы отстоят друг от друга, как минимум на 90 градусов
- временное окно регистрации
 3 нс
- выделившаяся энергия в кристалле соответствует фотопику

Алгоритмы реконструкции

Преимущества:

- прост в реализации
- для работы достаточно знания номеров сработавших кристаллов

Недостатки:

- малое число кристаллов и их ненулевой размер ограничивают покрытие исследуемой области, что сильно влияет на точность определения координаты источника
- время работы алгоритма

Рис.8 Визуализация работы первого алгоритма, использующего только расположение сработавших кристаллов и факт совпадения

Рис.9 Результат работы первого алгоритма на 4 наборах данных. 1 ряд - источник расположен в центре установки, 2 ряд - позиция источника - х = 5 мм, у = 5 мм

Рис.10 Визуализация работы второго алгоритма, использующего геометрию установки и время регистрации сигнала Преимущества:

- повышенная точность по сравнению с предыдущим алгоритмом благодаря учету времени регистрации сигнала
- время работы алгоритма

Недостатки:

- отбрасывание событий из-за возможности гамма-кванта просцинтиллировать в разных частях кристалла, благодаря чему изменяется время регистрации сигнала
- не учитываются ненулевые размеры кристалла (позиция определяется вдоль полосы, соединяющей кристаллы)

Рис.11 Результат работы второго алгоритма на 4 наборах данных. 1 ряд - источник расположен в центре установки, 2 ряд - позиция источника - х = 5 мм, у = 5 мм

Полученные результаты

Координата	Позиция	Среднее	Стандартное	
	источника, см	значение, см	отклонение, см	
X	0	0.0	0.7	
У	0	0.0	0.45	
X	0.5	0.6	0.6	
У	0.5	0.2	0.3	

Таблица 1— Результаты обработки данных, полученных в результате работы первого алгоритма

Координата	Позиция	Среднее	Стандартное	
	источника, см	значение, см	отклонение, см	
Х	0	-0.08	0.14	
У	0	0.0	0.6	
X	0.5	0.10	0.2	
У	0.5	0.7	0.3	

Таблица 2— Результаты обработки данных, полученных в результате работы второго алгоритма

Заключение

В данной работе рассматривался один из модулей установки ПЭТ. Были представлены сведения о принципах работы данного устройства, результаты по моделированию работы, а также имеющиеся на данный момент алгоритмы по восстановлению позиции источника.

Была создана модель кольца детектора в среде компьютерного моделирования GEANT4 с целью отработки необходимых методов анализа и считывания данных с будущего элемента детектора, был написан алгоритм отбора событий по совпадениям и два алгоритма определения координаты. Представлены результаты работы данных алгоритмов на 4 наборах данных. Указаны недочеты данных алгоритмов и методы их устранения, а именно подбор такого временного окна регистрации событий, при котором влияние эффекта рассеяния гамма-кванта и сцинтилляции в разных частях кристалла будет сведено к минимуму, добавление в алгоритмы вероятностного распределения вдоль прямой отклика и учет неточечных размеров кристаллов.

В будущем планируется модификация данных алгоритмов определения координаты источника и, кроме того, получение изображения исследуемого тела.

Дополнительные слайды

Таблица 2.1:	Некоторые	сцинтилляционные	кристаллы и	ихи	свойства
			L		

Кристалл	Время высве-	Длина вол- ны света,	Световыход фото-	Плотность, г/см ³	Гигроскопичность
	чивания, нс	HM	нов/кэВ		
LYSO	40	410	25	7.15	Нет
LuAP(Ce)	18	365	10	8.34	Нет
GAGG(Ce)	50 - 150	520	40 - 60	6.63	Нет
LaBr3(Ce)	16	380	61	5.08	Да

Таблица 3— Сводная таблица рассматриваемых сцинтилляционных кристаллов

Рис.12 Результат работы первого алгоритма: 1 ряд - источник расположен в центре установки, 2 ряд - позиция источника - х = 5 мм, у = 5 мм

Рис.13 Результат работы второго алгоритма: 1 ряд - источник расположен в центре установки, 2 ряд - позиция источника - х = 5 мм, у = 5 мм

x vs y only by numbers of sipm

x vs y only by numbers of sipm

Рис.14 Результат применения ограничений на отбор для результатов работы первого алгоритма: 1 столбец - взаимное расположение, 2 - фотопик, 3 - временное окно

Рис.15 Результат применения ограничений на отбор для результатов работы второго алгоритма: 1 столбец - взаимное расположение, 2 - фотопик, 3 - временное окно