Министерство науки и высшего образования Российской Федерации

Федеральное государственное автономное образовательное учреждение высшего образования

«Национальный исследовательский ядерный университет «МИФИ»

Скейлинг коллективных потоков заряженных адронов в Аu+Au столкновениях по данным эксперимента STAR

Выполнил: студент гр. М19-115 Поваров А. С.

Научный руководитель: к.ф.-м.н. Нигматкулов Г. А.

Москва — 2021г

Содержание

- Коллективные потоки на RHIC и LHC
- Эксперимент STAR
- Метод измерения коллективных потоков
- Результаты
- Заключение

Коллективные потоки на RHIC и LHC

Цель работы: изучение эллиптического и треугольного потоков заряженных и идентифицированных адронов и скейлингов при энергиях 11.5 -- 62.4 ГэВ на пару нуклонов по данным эксперимента STAR

на

И

Эксперимент STAR

Время-проекционная камера (ТРС):

- Регистрация заряженных частиц с |η| < 1, 0 < φ < 2π
- Для идентификации используется информация об удельных потерях энергии dE/dx

Времяпролетная система (TOF):

- |η| < 0.9, 0 < φ < 2π
- Идентификация по времени пролёта Наборы данных:

Au+Au, √s_{NN} = 11.5 - 62.4 ГэВ

Метод плоскости события

Использовался тот же метод, что и в Phys. Rev. C 88 (2013) 14902

$v_2(p_T)$ и $v_3(p_T)$ заряженных адронов как функция p_T

- Эллиптический поток зависит от центральности сильнее чем треугольный
- При нормировке на усредненное значение потока зависимости имеют похожую форму для каждой центральности и энергии

$v_{2}(p_{T})$ и $v_{3}(p_{T})$ заряженных адронов как функция энергии столкновения

Значения эллиптического и треугольного потоков увеличиваются при увеличении энергии столкновения.

$v_2(p_T)$ и $v_3(p_T)$ идентифицированных адронов

Скейлинг на количество валентных кварков

- Данный скейлинг был выполнен для v₂ и v₃ частиц и античастиц
- Лучше сохраняется для высоких энергий

Коллективные эффекты зарождаются на стадии деконфаймента кварков и глюонов

Заключение

Были представлены результаты v_2 , v_3 в столкновениях золота при $\sqrt{s_{_{\rm NN}}}$ = 11.5 — 62.4 ГэВ

($\sqrt{s_{NN}}$, centrality, PID, p_T)-зависимость для v_2 для v_3 :

- Эллиптический поток сильнее зависит от центральности, чем треугольный
- Потоки заряженных адронов возрастают с увеличением энергии столкновения
- Нормированные потоки заряженных адронов имеют схожие зависимости для каждой центральности и энергии столкновения
- При $p_T < 1.5$ ГэВ/с при одном и том же значении поперечного импульса поток $v_n(p_T)$ уменьшается с ростом массы адрона
- Наблюдается различие между потоками барионов и мезонов при р_т > 2 ГэВ/с
- Был выполнен скейлинг на количество валентных кварков. Может интерпретироваться как признак того, что коллективные эффекты зарождаются на партонной стадии. Данный скейлинг лучше сохраняется для более высоких энергий.

Полученные результаты необходимы для проверки и совершенствования гидродинамических моделей.

Запасные слайды

Коллективные потоки

Начальный эксцентриситет (и сопутствующие ему колебания) ε_n преобразуется в анизотропию импульса v_n

Восстановление плоскости события

Для измерения потоков используется метод плоскости события (Event Plane method).

В столкновениях плоскость реакции определяют направлением оси пучка и вектором прицельного параметра:

$$tg(n\Psi_n) = \frac{Q_{ny}}{Q_{nx}} = \frac{\sum_i \omega_i \sin(n\phi_i)}{\sum_i \omega_i \cos(n\phi_i)}$$
Peripheral Collision
(near) Central Collision

Poskanzer A.M., Voloshin S.A., Phys. Rev. C58, 1998, 1671-1678.

Отбор событий

Au+Au	Vz , см	Vr , см	Смещение по Vy, см	До отбора	После отбора
Run10 11.5 GeV	< 50	< 2	0.0	12M	10M
Run14 14.5 GeV	< 70	< 1	-0.89	28M	24M
Run11 19.6 GeV	< 70	< 2	0.0	25M	21M
Run10 27 GeV	< 70	< 2	0.0	74M	62M
Run18 27GeV	< 70	< 2	0.0	550M	460M
Run10 39 GeV	< 40	< 2	0.0	126M	105M
Run10 62.4 GeV	< 40	< 2	0.0	56M	47M

Отбор треков и идентифифкация частиц

Отбор треков:

- Первичные треки
- |η|<1
- DCA < 1 cm (π±,K±,p,p)
- Nhits > 15
- Nhits/NhitsPoss > 0.52

Идентификация заряженных частиц:

- dE/dx (TPC): |no| < 1.5 (для 27 GeV и 62.4 GeV)
- dE/dx (TPC): |no| < 3(для остальных)
- Идентификация по TOF:

 $egin{aligned} -0.15 < m_\pi^2 < 0.1 \ 0.2 < m_K^2 < 0.32 \ 0.74 < m_p^2 < 1.2 \end{aligned}$