Выпускная квалификационная работа Монте-Карло моделирование формы импульса и дискриминация событий при помощи нейронных сетей в эксперименте GERDA

Зарецкий Н.Д. Научный руководитель: Гробов А.В.

Национальный исследовательский ядерный университет «МИФИ»

29 июня 2021 г.

Введение

Цель работы:

- анализ данных, полученных на полукоаксиальных детекторах эксперимента GERDA, с использованием нейросети и дальнейшее применение нейросети для дискриминации фоновых и сигнальных событий.
- Монте-Карло моделирование импульсов с помощью генеративно-состязательных сетей (GAN).

Рисунок 1 – Схема $2\nu\beta\beta$

Рисунок 2 – Диаграмма $0\nu\beta\beta$

Эксперимент GERDA

Рисунок 3 – Схема эксперимента GERDA

Рисунок 4 – Схема полукоаксиальных и BEGe детекторов

Данные с эксперимента GERDA

Рисунок 5 – Спектр энергии двух электронов

Рисунок 6 – Спектр энергии с эксперимента GERDA

Зарецкий Н.Д. (НИЯУ «МИФИ»)

Формы импульсов для полукоаксиальных детекторов

Рисунок 7 – Возможные формы импульсов для разных мест выделения энергии в полукоаксиальном детекторе

GERDA

Калибровки

Анализ калибровочных данных

Рисунок 9 – Формы импульсов, полученные в полукоаксиальных детекторах эксперимента GERDA. По горизонтальной оси - время, нормированное на длительность импульса

Анализ калибровочных данных

Рисунок 10 – ROC-кривые для каждого детектора при обучении и проверке нейросети на калибровочных данных

Зарецкий Н.Д. (НИЯУ «МИФИ»)

GERDA

Анализ калибровочных данных

Рисунок 11 – Разделение сигнальных и фоновых событий для каждого детектора при обучении и проверке нейросети на калибровочных

данных

Зарецкий Н.Д. (НИЯУ «МИФИ»)

Рисунок 12 – Формы импульсов для Монте-Карло данных. По горизонтальной оси - время, нормированное на длительность импульса

Рисунок 13 – Формы импульсов, полученные на эксперименте GERDA, с границей области графического критерия отбора. По горизонтальной оси - время, нормированное на длительность импульса Зарецкий Н.Д. (НИЯУ «МИФИ») GERDA 29 июня 2021 г. 10/20

Рисунок 14 — Формы импульсов для Монте-Карло данных после преобразований. По горизонтальной оси - время, нормированное на длительность импульса

Рисунок 15 – ROC-кривые при обучении и проверке нейросети на Монте-Карло данных

Рисунок 16 – Разделение сигнальных и фоновых событий при обучении и проверке нейросети на Монте-Карло данных

Зарецкий Н.Д. (НИЯУ «МИФИ»)

Рисунок 17 – Разделение сигнальных и фоновых событий при обучении нейросети на Монте-Карло данных и ее проверке на калибровочных данных

Рисунок 18 – Гистограммы некоторых параметров TimeAtHeightX в Монте-Карло данных для детектора ANG5

Рисунок 19 – Пример форм сигнальных и фоновых импульсов, полученных на эксперименте GERDA. По горизонтальной оси - время,

нормированное на длительность импульса

Зарецкий Н.Д. (НИЯУ «МИФИ»)

Рисунок 20 – Пример форм сигнальных и фоновых импульсов, сгенерированных перцептроном, обученным на стандартизованных данных

Рисунок 21 – Импульсы, сгенерированные перцептроном, обученным на стандартизованных данных

Рисунок 22 – Разделение сигнала и фона для детектора ANG5 при обучении нейросети на сгенерированных данных и ее проверке на калибровочных данных

Зарецкий Н.Д. (НИЯУ «МИФИ»)

Рисунок 23 – ROC-кривая для детектора ANG5 при обучении нейросети на сгенерированных данных и ее проверке на калибровочных данных

Заключение

В ходе работы были сделаны следующие выводы:

- результаты по разделению сигнальных и фоновых событий в калибровочных данных детектора GERDA были улучшены по сравнению с предшествующим анализом, однако разделение по-прежнему остается трудновыполнимым.
- анализ имеющихся Монте-Карло данных свидетельствует об ошибках в Монте-Карло моделировании.
- нейросеть для бинарной классификации, обученная на синтезированных данных, работает при ее проверке на калибровочных данных, поэтому при условии улучшения работы сети-генератора можно использовать импульсы, синтезированные сетью GAN, в качестве Монте-Карло данных.

Дополнительные слайды

²²⁸Th decay chain

Energies of main α lines in keV

Распределение энергии

Гистограмма распределения энергии для калибровочных данных, используемых в анализе

Результаты

Результаты, полученные нейросетью для каждого детектора при обучении и проверке нейросети на калибровочных данных. Background rejection = 90%

Детектор	accuracy	roc_auc	f1
ANG1	0.60 ± 0.02	0.73 ± 0.02	0.42 ± 0.02
ANG2	0.66 ± 0.02	0.76 ± 0.02	0.56 ± 0.02
ANG3	0.65 ± 0.02	0.75 ± 0.02	0.53 ± 0.02
ANG4	0.66 ± 0.02	0.76 ± 0.02	0.55 ± 0.02
ANG5	0.67 ± 0.02	0.78 ± 0.02	0.58 ± 0.02
RG1	0.61 ± 0.02	0.72 ± 0.02	0.46 ± 0.02
RG2	0.64 ± 0.02	0.74 ± 0.02	0.52 ± 0.02
GTF112	0.68 ± 0.02	0.78 ± 0.02	0.58 ± 0.02
GTF45	0.65 ± 0.02	0.74 ± 0.02	0.53 ± 0.02

Результаты, полученные нейросетью для двух детекторов при обучении и проверке нейросети на Монте-Карло данных. Background rejection = 90%

Детектор	accuracy	roc_auc	f1
ANG5	0.85 ± 0.02	0.94 ± 0.02	0.85 ± 0.02
RG2	0.93 ± 0.02	0.96 ± 0.02	0.92 ± 0.02

Рисунок 24 – Гистограммы некоторых параметров TimeAtHeightX в Монте-Карло данных для детектора RG2

GAN

Распределения параметра TimeAtHeightX10 для сигнальных импульсов до и после стандартизации

GAN

Пример форм сигнальных и фоновых импульсов, сгенерированных перцептроном, обученным на нестандартизованных данных

GAN

Функции потерь при обучении моделей генератора и дискриминатора, состоящих из линейных слоев, для сигнала и фона

Результаты, полученные нейросетью для детектора ANG5 при обучении нейросети на сгенерированных данных и ее проверке на физических (калибровочных) данных

Детектор	accuracy	roc_auc	f1
ANG5	0.60 ± 0.02	0.61 ± 0.02	0.58 ± 0.02