X->Zy high mass search

Proklova Nadezda, Nicolo de Groot, Yanping Huang, Fábio Alves

Introduction

High mass search X->Zγ:

- aims to find BSM physics, can occur through either an extension of the Higgs sector or additional gauge fields
- Similar final state to Higgs->Zγ => similar selection procedure:
 - we consider Z boson decays only to di-electron or di-muon: good mass resolution and background rejection

Full Run2 update:

- extended range: 200 GeV 5 TeV
- major improvement for electron channels is required to the **boosting effect**, causing the electrons to be collimated (merged) and hard to reconstruct individually

Event selection & samples

- GRL, PV and Event quality selection
- Triggers: leptonic ones + high photon pT triggers to the high mass (> 1 TeV):
 - HLT_g120_loose, HLT_g140_loose, HLT_g200_etcut and HLT_g300_etcut,HLT_g200_loose
- Overlap removal (ee, γe, γμ and jet-e/γ/μ)
- >= 2 good leptons and opposite sign
- mll > 45 GeV
- Trigger Matching
- 76.18 GeV < mll < 106.18 GeV
- photon selection: pT> 15 GeV; Tight ID and FixedCutLoose isolation
- mllγ > 200 GeV
- ph. rel. pT (mll γ /pT) > 0.2 (previously was 0.3)

Samples:

- fun Run2 data
- MC16 signal ggH 200 GeV 5 TeV
- MC16 bkg Zgamma

$$l^{-/+} \ (l = e/\mu)$$

candidates	channel	single/di-lepton	trigger name	
2015 data	$Z(\rightarrow ee)\gamma$	single electron	HLT_e24_lhmedium_L1EM20VH	
			HLT_e60_lhmedium, HLT_e120_lhloose	
2015 data	$Z(\rightarrow ee)\gamma$	di-electron	HLT_2e12_lhloose_L12EM10VH	
2016 data	$Z(\rightarrow ee)\gamma$	single electron	<pre>HLT_e26_lhtight_nod0_ivarloose</pre>	
			HLT_e60_lhmedium_nod0, HLT_e140_lhloose_nod0	
2016 data	$Z(\rightarrow ee)\gamma$	di-electron	HLT_2e17_lhvloose_nod0	
2017-2018 data	$Z(\rightarrow ee)\gamma$	single electron	<pre>HLT_e26_lhtight_nod0_ivarloose</pre>	
			HLT_e60_lhmedium_nod0, HLT_e140_lhloose_nod0	
2017-2018 data	$Z(\rightarrow ee)\gamma$	di-electron	HLT_2e24_lhvloose_nod0	
2015 data	$Z(\rightarrow \mu\mu)\gamma$	single muon	HLT_mu26_imedium, HLT_mu50	
2015 data	$Z(\rightarrow \mu\mu)\gamma$	di-muon	HLT_mu22_mu8noL1	
2016 data	$Z(\rightarrow \mu\mu)\gamma$	single muon	HLT_mu26_imedium	
			HLT_mu26_ivarmedium, HLT_mu50	
2016 data	$Z(\rightarrow \mu\mu)\gamma$	di-muon	HLT_mu22_mu8noL1	
2017-2018 data	$Z(\rightarrow \mu\mu)\gamma$	single muon	HLT_mu26_ivarmedium, HLT_mu50	
2017-2018 data	$Z(\rightarrow \mu\mu)\gamma$	di-muon	HLT_mu22_mu8noL1	

Lepton and Photon Preselection (before overlap removal)					
Cut	Electrons	Muons	Photons		
p_{T}	> 10 GeV	> 10 GeV	> 10 GeV		
$ \eta $	$ \eta < 2.47$	$ \eta < 2.7$	$ \eta < 2.37$		
	exclude $1.37 < \eta < 1.52$	-	exclude $1.37 < \eta < 1.52$		
$ d_0 /\sigma_{d_0}$	< 5	< 3	-		
$z_0 \sin \theta$	< 0.5 mm	< 0.5 mm	-		
Identification	entification Loose		Loose		
Isolation	FCLoose	FCLoose	-		

instead: Loose_VarRad for Mx < 1 TeV TightTrackOnly_VarRad for Mx > 1 TeV

Low mass signal efficiencies

Check of Data18, bkg Zgamma MC16e + DD bkg Z+jets, signal ggH Mx samples

Revisiting photon pT vs rel.pT cuts:

- Checking possibility to use photon pT: as expected photon pT distribution varies significantly with Mx range, hard to choose universal cut point
- Use of rel. pT cut: similar shapes for different Mx ranges, signal distributions move slightly to the right with higher Mx, still possible to choose ~1 cut point to suppress background

rel.pT cut optimisation

Check of Data18, bkg Zgamma MC16e + data-driven background Z+jets samples

peak of signal distribution is moving with higher mass, while for background is ~same => cut at 0.3 cuts more events at low masses than at high masses

Turn-on effect is seen for rel.pT > 0.3 for Mx < 200 GeV but not seen for rel.pT > 0.2

rel.pT cut optimisation

differences in lepton (pink curve) efficiency are caused by ID&Isolation cuts applied at later stages

Checking the possibility to optimise last applied cut -

- rel.pT > 0.3 (black curve)
- increased signal efficiency with rel.pT > 0.2 for both low and high mass regions (from 75-85% efficiency -> ~95% efficiency)

Low mass signal efficiencies

differences in lepton (pink curve) efficiency are caused by ID&Isolation cuts applied at later stages

Checking the possibility to optimise last applied cut -

- rel.pT > 0.3 (black curve)
- increased signal efficiency with rel.pT > 0.2 for both low and high mass regions (from 65-90% efficiency -> ~85-95% efficiency)

Background composition

Check of full Run2 Data, bkg Zgamma MC16 + data-driven bkg Z+jets samples

- Template fit method: fraction of Z+jets events is estimated from binned fit to calorimeter isolation

- fit is performed to signal & control regions: signal region is defined as photons passing Tight ID; control region is defined as photons failing Tight ID but passing Loose'4

- fit extracts Zgamma yield and shape (and same for Z+jets) from 2 regions

Data/Background plots

Fraction of Zgamma/Zjets events is estimated with template fit method

Drop of signal efficiency at high mass (> 1 TeV) due to electron being highly collimated (boost effect):

- two cluster of energies are merged as one and only one electron is reconstructed
 - we can't do much about ID, but maybe isolation can be improved?
 - or do we need isolation applied at all since there might be no significant background at these energies?
 - Current choice of electron isolation: FCLoose

- no problem is seen for muons as since Run 2 muon reconstruction can resolve close by muons within an angular resolution of the order of 0.01-0.02

- Signal efficiency for electrons show large drop for leptons for high masses
- Several proposals concerning electron isolation:
- check separately impact of electron ID and isolation
 check dR vs Mx:
 - A) events with deltaR > 0.31 (mostly low Mx)
 - B) events with the two electrons explicitly reconstructed as two electron objects with deltaR < 0.31 (up to intermediate Mx)
 - C) events where the two electrons are so collimated that only a single electron is reconstructed (very high M_X signals)

Isolation closeBy correction tool can help only with B) case

dR between two electrons as function of resonant mass:

- small improvement with applied isolation + closeBy correction tool at high mass
- dR ~ 0.2 with no isolation, ~0.3 with isolation

Check of topoetcone20/pT with NO isolation closeBy correction applied

- previous version distribution was up to 0.4 only (in backup)
 - Feedback from IFF check wider distribution
- large number of events is cut off after isolation is applied for higher mass samples (> 3 TeV)
- isolation seems to show distribution for two collimated electrons

Check of topoetcone20/pT with isolation closeBy correction applied

- large number of events is cut off after isolation is applied for higher mass samples (> 3 TeV)
- more events are now in the peak of the distribution after closeBy correction tool
- distributions of the two leptons are corrected to the resolved shape
 - Decision is to not apply isolation on masses > 2.5 TeV

Check of isolation variables entering FCLoose isolation: ptvarcone20_TightTTVA_pt1000/pT

- Distribution for subleading lepton
- larger number of events is cut off for higher mass samples
- possibility that due to varied cone size min(10 GeV/particle->pt(), 0.2) at high mass (for 1 TeV electron the cone size is 0.1) second track is missed?
- Decision is to not apply isolation on masses > 2.5 TeV

Background studies

Extra set of MC background samples:

- MC16e Pythia8 gammajet (800000-800013)
- Distributions are shown only for leading lepton

calorimeter & track isolation for subleading lepton is in backup

Should we treat this background for our studies as well?

Negligible background for Mx > 3 TeV - we can drop lepton isolation for that region

Muon channel: Signal modelling

Trying to model signal shape with DSCB for the range from 140 GeV - 5 TeV

Muon channel: Signal modelling

for Mx > 2.5 GeV Nbins are divided by 10 to have correct chi2 computation

Signal modelling with DSCB

Signal modelling, DSCB parameters are taken the same as for individual

- fits
- simultaneous fit is done for the whole range _
- higher mass fits need improvement not very clear why there's such difference wrt individual fits

Signal modelling with DSCB + Gaus

- DSCB + Gaussian function is used - sometimes second peak is introduced

Categorisation & Electron channel

There's ongoing effort on categorising events in three categories:

- muon channel, electron channel & merged channel

Electron channel:

- development of new electron identification menu
- Input variables: R_{had} , f_3 , R_{η} , $w_{\eta 2}$, R_{ϕ} , $w_{s1 tot}$, E_{ratio} , f_1
- Sig: mc16a ggF 5 TeV
- Bkg: Side-band data 2015-2016 (Non-Z bkg: Exclude 76.2 GeV < m_{ll} < 106.2 GeV events)</p>

Backup slides

Background composition

Variation of nominal parameters: Loose'2/3/5 and topoetcone40 (instead of Loose'4 and topoetcone20)

Results are tested for rel.pT > 0.2. Similar results obtained for rel.pT > 0.3 with purity higher $\sim 2\%$

Absolute signal efficiencies

Muon signal efficiencies

