Recent CMS Results on Vector Boson Scattering

Guillelmo Gómez-Ceballos (on behalf of the CMS Collaboration)

Massachusetts Institute of Technology

CERN LPCC EP-LHC Seminar, 10 Nov. 2020

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Vector Boson Scattering (VBS) at the LHC

Characterized by $\rm VVjj$ ($\rm V=W/Z)$ final state:

triple and quartic gauge couplings (QGCs)

Higgs boson exchange and Higgs boson production via VBS

- Sensitivity to QGC \rightarrow setting exclusion limits on aQGCs
- Contributions to the final state (at leading order):
 - Electroweak (EW) = $O(\alpha_{EW}^6)$
 - QCD = O($\alpha_{EW}^4 \alpha_{\underline{S}}^2$)
 - Interference: $O(\alpha_{EW}^5 \alpha_S)$

Important Measurements

Electroweak di(tri)boson measurements:

- test of the EW sector of the Standard Model (SM) at the TeV scale
- sensitive to Anomalous Triple (Quartic) Gauge Couplings (aTGC/aQGC)
- background to other analyses
- VV scattering \rightarrow (massive, weak) VBS:
 - measurable key process linked with Electro-Weak Symmetry Breaking (EWSB)
 - general final state: diboson plus at least two jets
- VBS at the LHC is the key process to experimentally probe the SM nature of EWSB:
 - complementary to direct Higgs boson measurements

VV Scattering Event Topology

- Diboson final states:
 - ► fully leptonic:
 - $W^{\pm}W^{\pm} \rightarrow \ell^{\pm}\nu\ell^{\pm}\nu$: best σ_{EW}/σ_{QCD} ratio
 - ▶ $W^{\pm}W^{\mp} \rightarrow \ell^{\pm}\nu\ell^{\mp}\nu$: relatively large top-quark background
 - $W^{\pm}Z \rightarrow 3\ell\nu$: clean channel with three leptons
 - $\blacktriangleright~{\rm ZZ} \to 4\ell :$ very clean, limited number of events
 - ▶ $ZZ \rightarrow 2\ell 2\nu$: more difficult analysis to perform, but relatively large branching ratio
 - ► semi-leptonic/hadronic: $ZW/ZZ \rightarrow \ell\ell jj$, $WW/WZ \rightarrow \ell\nu jj$, $ZZ/WW \rightarrow jjjj$, $ZZ/WZ \rightarrow jj\nu\nu$
 - more difficult due to larger backgrounds, powerful for aQGC searches
 - ▶ high $m_{\rm VV}$ generates boosted jets which can be merged
 - photonic:
 - $Z\gamma \rightarrow \ell^{\pm}\ell^{\mp}\gamma$: relatively clean, except QCD-induced background
 - $W\gamma \rightarrow \ell \nu \gamma$: larger signal, but larger nonprompt background
- VBS topology:

4

- two very energetic forward-backward tagging jets
- large m_{jj} and $\Delta \eta_{jj}$
- little hadronic activity between the two tagging jets in fully leptonic/photonic final states

Representative Feynman Diagrams

EW-induced $W^{\pm}W^{\pm}jj$ and WZjj production

$W^{\pm}W^{\pm}jj$ and WZjj Data Candidates

$W^+W^+jj \rightarrow e^+ \nu \mu^+ \nu jj$ event

$W^+Zjj \rightarrow e^+ \nu \mu^+ \mu^- jj$ event

VBS Measurements in a Glance

- Select VVjj events with VBS-like jets
 - take into account specific final state
- Estimate non-VV backgrounds
 - combination of methods based in data and simulation
- Measure inclusive VVjj cross sections
 - EW+QCD production
 - EW production by discriminating against the QCD-induced production
 - cut-based (simpler) vs. multivariate (complex)
- Measure differential cross sections
 - need larger (and cleaner) data sets
- Search for new physics modifying VVV & VVVV interactions
 - ▶ generic effective field theory (EFT): e.g. aQGCs
 - \blacktriangleright explicit models: e.g. VBF $H^{\pm\pm}$ and H^{\pm}

 $^{W^{\pm}W^{\pm}jj}$ & WZjj Measurements SMP-19-012 Arxiv:2005.01173 PLB 809 (2020) 135710

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 ● のへの

- ► First simultaneous W[±]W[±]jj & WZjj analysis using fully leptonic final states
- Select events in several signal regions (SRs) and control regions (CRs)
 - ► simultaneously measure W[±]W[±]jj & WZjj production
 - measure normalization of main background processes in situ
- Focus on:
 - measurements of W[±]W[±]jj (EW and EW+QCD) and WZjj (EW, EW+QCD, and QCD) inclusive fiducial cross sections
 - differential cross sections for EW+QCD production
 - anomalous couplings searches

$\rm W^{\pm}W^{\pm}jj$ & $\rm WZjj$ Event Selection

Variable	$W^{\pm}W^{\pm}jj$	WZjj
Leptons	2ℓ , $p_{\mathrm{T}}>25/20\mathrm{GeV}$	3ℓ , $p_{\mathrm{T}}>25/10/20\mathrm{GeV}$
$oldsymbol{ ho}_{\mathrm{T}}^{\mathrm{j}}$	$> 50 \mathrm{GeV}$	$> 50 \mathrm{GeV}$
$ m_{\ell\ell}-m_{ m Z} $	>15 GeV(ee)	$<\!\!15 \mathrm{GeV}$
$m_{\ell\ell}$	> 20 GeV	—
$m_{\ell\ell\ell}$	—	$> 100 \mathrm{GeV}$
$p_{\mathrm{T}}^{\mathrm{miss}}$	$> 30 \mathrm{GeV}$	> 30 GeV
b quark veto	Required	Required
$\max(z_{\ell}^*)$	<0.75	<1.0
m _{jj}	$> 500 { m GeV}$	$> 500 { m GeV}$
$ \Delta\eta_{ m jj} $	>2.5	>2.5

$$z_\ell^* = \Big|\eta^\ell - rac{\eta^{\mathrm{j}_1} + \eta^{\mathrm{j}_2}}{2}\Big|/|\Delta\eta_{\mathrm{j}\mathrm{j}}|$$

Tight lepton selection to reduce nonprompt lepton background Only electrons and muons are considered

BDT to Discriminate EW & QCD WZjj Production

- Enhance WZjj EW production w.r.t larger WZjj QCD production
 - $\sigma_{EW}/\sigma_{QCD} \sim 1/2$
- ▶ 13 input variables retained out of a larger set tested
 - jet kinematics, vector boson kinematics, and vector boson jet mix
- ▶ Improved sensitivity w.r.t. using m_{jj} - $|\Delta\eta_{jj}|$ by ~20%

Variable	Definition
m _{ii}	Mass of the leading and trailing jets system
$ \Delta \eta_{ii} $	Absolute difference in rapidity of the leading and trailing jets
$\Delta \phi_{ m jj}$	Absolute difference in azimuthal angles of the leading and trailing jets
$ ho_{ m T}^{ m j1}$	$ ho_{ m T}$ of the leading jet
$p_{\mathrm{T}}^{\mathrm{j2}}$	$p_{ m T}$ of the trailing jet
η^{j1}	Pseudorapidity of the leading jet
$ \eta^{\mathrm{W}} - \eta^{\mathrm{Z}} $	Absolute difference between η^{W} and η^{Z}
$z_{\ell_i}^* (i = 1 - 3)$	Zeppenfeld variable of the three selected leptons
$z_{3\ell}^*$	Zeppenfeld variable of the vector sum of the three leptons
$\Delta R_{\rm j1,Z}$	ΔR between the leading jet and the ${ m Z}$ boson
$ ec{p_{\mathrm{T}}^{\mathrm{tot}}} /\sum_{i} p_{\mathrm{T}}^{i}$	Vector sum ${m p}_{ m T}$ normalized to their scalar ${m p}_{ m T}$ sum

Background Estimation & Analysis Strategy

- Combination of data-driven methods and detailed simulation studies to estimate backgrounds
 - nonprompt lepton background estimated from data, in addition to a CR
 - \blacktriangleright charge misidentification electron rate estimated using $Z \rightarrow ee$
 - ZZ and tZq backgrounds normalized with CRs
 - other small background processes from simulation
- Analysis strategy: single fit with the following regions
 - W[±]W[±]jj SR: 2D $m_{jj} m_{\ell\ell}$
 - WZjj SR: BDT
 - ▶ nonprompt lepton background CR (inverting b-tagging): *m*_{jj}

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ・ つへで

- ► tZq CR (inverting b-tagging): m_{jj}
- ► ZZ CR (4 leptons): *m*_{jj}

Yields & Significance

Expected yields from SM processes and observed data events in $W^{\pm}W^{\pm}jj$ and WZjj SRs. Expected yields are shown before the fit to the data (pre-fit) and with their best

Process	W±W	±jj SR	WZj	SR
	Pre-fit	Post-fit	Pre-fit	Post-fit
EW $W^{\pm}W^{\pm}jj$	209 ± 22	210 ± 26	_	_
QCD $W^{\pm}W^{\pm}jj$	13.6 ± 2.3	13.7 ± 2.2	_	_
Interference $W^{\pm}W^{\pm}jj$	8.4 ± 2.3	8.7 ± 2.3	_	_
EW WZjj	14.1 ± 1.7	17.8 ± 3.9	54.3 ± 5.7	69 ± 15
QCD WZjj	42.9 ± 4.7	42.7 ± 7.4	117.9 ± 6.8	117 ± 17
Interference WZjj	0.3 ± 0.1	0.3 ± 0.2	2.2 ± 0.6	2.7 ± 1.0
$\mathbf{Z}\mathbf{Z}$	0.7 ± 0.1	0.7 ± 0.2	6.1 ± 0.4	6.0 ± 1.8
Nonprompt	211 ± 55	193 ± 40	14.6 ± 7.6	14.4 ± 6.7
tVx	9.0 ± 3.1	7.4 ± 2.2	15.1 ± 1.9	14.3 ± 2.8
$\mathrm{W}\gamma$	7.8 ± 2.0	9.1 ± 2.9	1.1 ± 0.5	1.1 ± 0.4
Wrong-sign	13.5 ± 7.1	13.9 ± 6.5	1.6 ± 0.7	1.7 ± 0.7
Other background	5.0 ± 2.4	5.2 ± 2.1	3.3 ± 0.7	3.3 ± 0.7
Total SM	535 ± 60	522 ± 49	216 ± 12	229 ± 23
Data	524		229	

fit normalizations from the simultaneous fit (post-fit)

EW WZjj observed (expected) statistical significance: 6.8 (5.3) s.d. EW $W^{\pm}W^{\pm}jj$ statistical significance: $\gg 5$ s.d.

Distributions in $W^\pm W^\pm jj$ SR

▶ m_{jj} (left) & $m_{\ell\ell}$ (right) distributions used in the main fit

イロン スポン イヨン イヨン

Э

Several other distributions shown in back-up

Distributions in $\mathrm{WZ}jj$ SR

Flat distribution of EW WZjj production by construction

イロン 不同と 不同と 不同と

Э

▶ Comparison of BDT (left) vs. *m*_{jj} (right)

Systematic Uncertainties in Inclusive Cross Sections

Source of uncertainty	$W^{\pm}W^{\pm}jj$ (%)	WZjj (%)
Integrated luminosity	1.5	1.6
Lepton measurement	1.8	2.9
Jet energy scale and resolution	1.5	4.3
Pileup	0.1	0.4
b tagging	1.0	1.0
Nonprompt rate	3.5	1.4
Trigger	1.1	1.1
Limited sample size	2.6	3.7
Theory	1.9	3.8
Total systematic uncertainty	5.7	7.9
Statistical uncertainty	8.9	22
Total uncertainty	11	23

(ロ) (回) (E) (E) (E) (O)

Statistically limited measurements

Inclusive Fiducial Cross Sections

- ► W[±]W[±]jj fiducial region:
 - ▶ two same-sign leptons with $p_{\rm T} > 20 {\rm GeV}$, $|\eta| < 2.5$, and $m_{\ell\ell} > 20 {\rm GeV}$
 - two jets with $m_{jj} > 500 {
 m GeV}$ and $|\Delta \eta_{jj}| > 2.5$
- WZjj fiducial region:
 - ► three leptons with p_T > 20GeV, |η| < 2.5, and an opposite charge same-flavor lepton pair with |m_{ℓℓ} m_Z| < 15GeV</p>
 - two jets with $m_{jj} > 500 \text{GeV}$ and $|\Delta \eta_{jj}| > 2.5$

Dragons	$\pi \mathcal{R}(\mathbf{fb})$	Theoretical prediction	Theoretical prediction	
1100055	<i>U D</i> (ID)	without NLO corrections (fb)	with NLO corrections (fb)	
EIN IN/±IN/±	3.98 ± 0.45	3.93 ± 0.57	3.21 ± 0.47	
TAA AA AA	$0.37(\mathrm{stat})\pm0.25(\mathrm{syst})$	5.55 ± 0.57	5.51 ± 0.47	
EWLOCD W [±] W [±]	4.42 ± 0.47	4.34 ± 0.69	3.72 ± 0.59	
EW+QCD W W	$0.39(\mathrm{stat})\pm0.25(\mathrm{syst})$	4.04 ± 0.09	5.72 ± 0.59	
EW W/7	1.81 ± 0.41	1.41 ± 0.21	1.24 ± 0.18	
LITINZ	$0.39(\mathrm{stat})\pm0.14(\mathrm{syst})$	1.11 ± 0.21		
FW+OCD WZ	4.97 ± 0.46	454 ± 0.90	4.36 ± 0.88	
Linigeb nz	$0.40(\mathrm{stat})\pm0.23(\mathrm{syst})$	1.01 ± 0.00	1.00 ± 0.00	
QCD WZ	3.15 ± 0.49	3.12 ± 0.70	3.12 ± 0.70	
	$0.45(\mathrm{stat})\pm0.18(\mathrm{syst})$	0.12 ± 0.70	5.12 ± 0.70	

Measurement compatible with predictions within uncertainties

m_{jj} & $m_{\ell\ell}$ W[±]W[±]jj Fiducial Cross Section Measurements

m_{jj} WZjj Fiducial Cross Section Measurements

イロン イヨン イヨン イヨン

Э

- Good agreement between data and prediction
- Performed by replacing BDT to m_{jj} in the fit

Polarized $W^{\pm}W^{\pm}$ Scattering

- Heavy vector V bosons acquire their mass through the Brout-Englert-Higgs mechanism
- Three polarization modes of V bosons: one longitudinal and two transverse
- The unitarity of the longitudinally polarized VBS at high energies is restored in the SM by a Higgs boson
 - Higgs boson contribution cancels cross section increase
 - provide complementary information to direct Higgs boson measurements

Polarized W[±]W[±]jj Cross Sections SMP-20-006 Arxiv:2009.09429

Overview

- First measurement of the EW production cross sections of the polarized VBS!
 - \blacktriangleright longitudinal scattering contributes to about ${\sim}10\%$ of the overall EW production
 - run 2 integrated luminosity opens up first possibilities to study polarization modes
- Analysis solely based on the previous discussed CMS-SMP-19-012 analysis
 - ▶ WZjj treated as another background in a simultaneous fit
 - ▶ Polarization configurations: EW $W_L^{\pm}W_L^{\pm}$ (LL), EW $W_L^{\pm}W_T^{\pm}$ (LT), and EW $W_T^{\pm}W_T^{\pm}$ (TT)
- Measurements:
 - ► ideally, measure all three contributions separately
 - unreliable currently due to limited data sample size
 - provide two maximum-likelihood fits
 - LL and XT (X = L or T) / LX and TT (X = L or T)
 - ► two sets reported with the helicity eigenstates defined
 - ▶ in the $W^{\pm}W^{\pm}$ center-of-mass (c.m.) frame
 - ▶ in the initial-state parton-parton c.m. frame

Signal Distributions

- · Distributions of three variables with great separation power are shown
- Different between LL and XT, between LX and TT (X=L or T)

Signal Extraction

- Multivariate techniques are used to enhance the separation between different processes
- Two sets of BDTs are trained
 - ▶ LL against (LT+TT)
 - ► (LL+LT) against TT
- Different polarization states lead to different kinematic distributions
- ▶ Different trainings for WW and parton-parton c.m. frames
- Inclusive BDT to isolate EW W[±]W[±]jj signal from nonVBS backgrounds
 - \blacktriangleright dominated by nonprompt $t\overline{t}$ background
- Three categories of discriminating variables:
 - jet kinematics, vector boson kinematics, and vector boson jet mix

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ・ つへで

▶ $W^{\pm}W^{\pm}jj$ SR: 2D BDT scores, signal-BDT vs. inclusive BDT

Observed Results

► W[±]W[±] c.m. frame

- Observed (expected) limit of 1.17 (0.88) fb for $W_L^{\pm}W_L^{\pm}$
- Observed (expected) significance of 2.3 (3.1) s.d. for $\overline{W}_{L}^{\pm}W_{X}^{\pm}$
- Parton-parton c.m. frame
 - Observed (expected) limit of 1.06 (0.85) fb for $W_{L}^{\pm}W_{L}^{\pm}$
 - Observed (expected) significance of 2.6 (2.9) s.d. for $\overline{W}_{L}^{\pm}W_{X}^{\pm}$

$W^{\pm}W^{\pm}$ Polarization Cross Sections

- Same fiducial region as SMP-19-012
- Consistent theory predictions between MADGRAPH and PHANTOM generators
- ► Reported cross sections $W_L^{\pm}W_L^{\pm}/W_X^{\pm}W_T^{\pm}$ or $W_L^{\pm}W_X^{\pm}/W_T^{\pm}W_T^{\pm}$

W ⁺ W ⁺ c.m. frame			pai	rton-pa	rton c.m. frame
Process	$\sigma \mathcal{B}$ (fb)	Theoretical prediction (fb)	Process	$\sigma \mathcal{B}$ (fb)	Theoretical prediction (fb)
$W_L^{\pm}W_L^{\pm}$	$0.32^{+0.42}_{-0.40}$	0.44 ± 0.05	$W_L^{\pm}W_L^{\pm}$	$0.24^{+0.40}_{-0.37}$	0.28 ± 0.03
$W_X^{\pm}W_T^{\pm}$	$3.06^{+0.51}_{-0.48}$	3.13 ± 0.35	$W_X^{\pm}W_T^{\pm}$	$3.25^{+0.50}_{-0.48}$	3.32 ± 0.37
$W_L^{\pm}W_X^{\pm}$	$1.20^{+0.56}_{-0.53}$	1.63 ± 0.18	$W_L^{\pm}W_X^{\pm}$	$1.40^{+0.60}_{-0.57}$	1.71 ± 0.19
$W_T^{\pm}W_T^{\pm}$	$2.11\substack{+0.49\\-0.47}$	1.94 ± 0.21	$W_T^{\pm}W_T^{\pm}$	$2.03^{+0.51}_{-0.50}$	1.89 ± 0.21

Good agreement among results and theoretical predictions

${ m ZZ} ightarrow 4\ell$ CMS-SMP-20-001 Arxiv:2008.07013

Overview

- Measure EW ZZjj production using 4ℓ events
 - $\blacktriangleright~ZZ$ selection similar to that used in the CMS $H\to ZZ\to 4\ell$ measurement, see Arxiv:1706.09936
- Very clean sample with rather small non-ZZ background
 - \blacktriangleright low signal yields \rightarrow lepton selection as efficient as possible
- Large, relatively speaking, QCD-induced production
- Simple variable approach not enough:
 - ► making use of a matrix-element discriminant (K_D) to enhance EW production

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ・ つへで

- details can be found in Arxiv:1309.4819
- Define three regions to measure EW production
 - ► ZZjj inclusive
 - VBS-enriched loose
 - VBS-enriched tight

Detailed ZZjj Selection

Particle type	Selection
	ZZjj inclusive
Leptons	$p_{\mathrm{T}}(\ell_1) > 20 \mathrm{GeV}$
	$p_{\rm T}(\ell_2) > 10 {\rm GeV}$
	$p_{\rm T}(\ell) > 5 {\rm GeV}$
	$ \eta(\ell) < 2.5$
	(γ with $\Delta R(\ell, \gamma) < 0.1$ added to ℓ 4-vector)
Z and ZZ	$60 < m(\ell \ell) < 120 \mathrm{GeV}$
	$m(4\ell) > 180 \mathrm{GeV}$
Jets	at least 2
	$p_{\rm T}(j) > 30 {\rm GeV}$
	$ \eta(j) < 4.7$
	$m_{\rm ii} > 100 {\rm GeV}$
	$\Delta \ddot{R}(\ell, \mathbf{j}) > 0.4$ for each ℓ, \mathbf{j}
	VBS-enriched (loose)
	ZZjj inclusive +
Jets	$ \Delta \eta_{ii} > 2.4$
	$m_{\rm ii} > 400 {\rm GeV}$
	" VBS-enriched (tight)
	ZZjj inclusive +
Jets	$ \Delta \eta_{ii} > 2.4$
	$m_{\rm jj} > 1 {\rm TeV}$

Distributions in ZZjj Inclusion Region

- Rather small non-ZZ contribution in data
- ▶ EW ZZjj contribution scaled by a factor of 30 for visibility
- Different shapes of EW signal and backgrounds, but a single kinematic distribution not good enough to observe it

・ロト ・四ト ・ヨト ・ヨト ・ヨ

Final K_D Distribution in ZZjj Inclusion Region

- Visible excess of data events by excluding EW ZZjj contribution in prediction
- Observed (expected) statistical significance 4.0 (3.5) s.d.

Yields & Cross Section Measurements

Year	Signal (EW ZZ	jj) Z+X	$q\overline{q} \rightarrow ZZjj$	gg ightarrow ZZjj	ttZ+VVZ	Total predicted	Data
			ZZjj inclusive				
2016	6.3 ± 0.7	2.8 ± 1.1	65.6 ± 9.5	13.5 ± 2.0	8.4 ± 2.2	96 ± 13	95
2017	7.4 ± 0.8	2.4 ± 0.9	77.7 ± 11.2	20.3 ± 3.0	9.6 ± 2.5	117 ± 15	111
2018	10.4 ± 1.1	4.1 ± 1.6	98.1 ± 14.2	29.1 ± 4.3	14.2 ± 3.8	156 ± 20	159
All	24.1 ± 2.5	9.4 ± 3.6	241.5 ± 34.9	62.9 ± 9.3	32.2 ± 8.5	370 ± 48	365
			VBS signal-enriched (loose)				
2016	4.2 ± 0.4	0.4 ± 0.2	9.7 ± 1.4	3.2 ± 0.5	1.1 ± 0.3	18.7 ± 2.3	21
2017	4.9 ± 0.5	0.5 ± 0.2	13.5 ± 1.9	5.5 ± 0.8	1.2 ± 0.3	25.5 ± 3.1	17
2018	6.9 ± 0.7	0.8 ± 0.3	14.9 ± 2.2	8.3 ± 1.2	1.7 ± 0.5	32.6 ± 3.9	30
All	16.0 ± 1.7	1.6 ± 0.6	38.1 ± 5.5	17.0 ± 2.5	4.1 ± 1.1	76.8 ± 9.3	68
			VBS signal-enriched (tight)				
2016	2.4 ± 0.3	0.10 ± 0.04	1.3 ± 0.2	0.7 ± 0.1	0.24 ± 0.06	4.8 ± 0.5	4
2017	2.7 ± 0.3	0.05 ± 0.02	1.9 ± 0.3	1.2 ± 0.2	0.14 ± 0.04	6.0 ± 0.7	3
2018	3.9 ± 0.4	0.17 ± 0.06	2.0 ± 0.3	1.5 ± 0.2	0.30 ± 0.08	7.8 ± 0.9	10
All	9.0 ± 1.0	0.32 ± 0.12	5.3 ± 0.8	3.3 ± 0.5	0.68 ± 0.18	18.6 ± 2.1	17
		Perturbativ	e order SM σ (fb)	Measur	red σ (fb)	
			ZZjj inclusive	e			
		LO	0.275 ± 0.0	21	0.11 .	. 10.04	
E	W		0.278 0.0	0.3	$33^{+0.11}_{-0.10}$ (sta	$at)_{-0.03}^{+0.04}$ (syst))
		NLOQCD	0.278 ± 0.0	/1/	0.10	0.00	
E	W+QCD		5.35 ± 0.5	5.29	$9^{+0.31}_{-0.30}$ (stat	t) \pm 0.46 (sys	t)
			VBS-enriched (lo	ose)			
		10	0.186 ± 0.0	15	. 0.070	10.000	
E	W		0.100 ± 0.0	0.20)0 ^{+0.078} (st	$(sy_{-0.013}^{+0.023})$	st)
		NLO QCD	0.197 ± 0.0	113	-0.007 \	/=0.015 ()	<i>,</i>
E	W+QCD		1.21 ± 0.0	9 1.0	$00^{+0.12}_{-0.11}$ (sta	at) ^{+0.06} _{-0.05} (syst)
			VBS-enriched (ti	ght)	0.11		
		10	0.104 ± 0.0	08			
E	W		0.104 ± 0.0	0.09	$9^{+0.04}_{-0.02}$ (stat	t) \pm 0.02 (svs	t)
		NLO QCD	0.108 ± 0.0	07	-0.03	,	/
E	W+QCD		0.221 ± 0.0	0.20	$)^{+0.05}_{-0.04}$ (sta	t) \pm 0.02 (sys	t)

32

Observation of EW $W\gamma$ Production SMP-19-008 Arxiv:2008.10521

$W\gamma$ Analysis

- 2016 data analysis
- Event selection:
 - one high-p_T electron or muon, and one high-p_T photon
 - moderate p_T^{miss} and m_T^W to reject nonprompt lepton/photon background
 - $m_{jj} > 500 \text{GeV}$ and $|\Delta \eta_{jj}| > 2.5$ to select VBS-like topology
- Background estimation:
 - QCD-induced Wγ estimated in-situ
 - nonprompt lepton/photon extrapolated from data
 - $\blacktriangleright \ e \to \gamma \text{ background estimated} \\ \text{using } \mathbf{Z} \to ee \text{ events} \\ \label{eq:alpha}$
 - other processes from simulation

	Electron barrel	Electron endcap	Muon barrel	Muon endcap
MisID photon	81.0 ± 5.2	48.1 ± 4.9	134.8 ± 8.2	52.1 ± 4.8
MisID lepton	63.7 ± 12.3	27.8 ± 7.2	46.8 ± 10.6	23.1 ± 6.5
QCD Wyjj	154.2 ± 12.0	41.1 ± 4.4	221.2 ± 15.8	72.1 ± 6.2
ttγ	20.6 ± 1.6	5.1 ± 0.6	28.3 ± 1.8	6.9 ± 0.8
$QCD Z\gamma$	18.0 ± 3.1	1.9 ± 0.9	16.2 ± 3.0	4.9 ± 1.3
Single t	4.9 ± 0.8	2.5 ± 0.5	6.8 ± 0.9	2.4 ± 0.5
VV	4.2 ± 1.6	0.6 ± 0.6	7.5 ± 2.1	1.4 ± 0.7
$e \rightarrow \gamma$	1.5 ± 0.6	2.1 ± 0.8	1.7 ± 0.7	1.1 ± 0.6
Total background	348.3 ± 18.4	129.1 ± 9.9	463.4 ± 21.2	163.8 ± 10.4
EW Wyjj	48.8 ± 2.2	16.1 ± 1.0	74.5 ± 2.8	24.4 ± 1.3
Total predicted	397.1 ± 18.5	145.2 ± 10.0	537.9 ± 21.4	188.2 ± 10.5
Data	393	159	565	201

EW $W\gamma jj$ Measurement

- This result: observed (expected) significance is 4.9 (4.6) s.d.
- ▶ 8+13 TeV combination: observed (expected) significance is 5.3 (4.8) s.d.
- $\sigma_{EW}^{fid}(13 \text{TeV}) = 20.4 \pm 0.4 (lumi) \pm 2.8 (stat) \pm 3.5 (syst) \text{ fb} = 20.4 \pm 4.5 \text{ fb}$

Fiducial QCD+EW $W\gamma jj$ Cross Section

• $\sigma_{EW+QCD}^{fid}(13\text{TeV}) = 108 \pm 2(lumi) \pm 5(stat) \pm 15(syst)$ fb = 108 ± 16 fb

36

Anomalous Couplings

aQGCs

- Extensions of the SM induce coupling modifications that can be parameterized in terms of an EFT approach
- In these analyses, limits on aQGCs are set via EFT approach. Dimension-8 operators that can modify the VVjj production through aQGCs are considered
- Simplified versions analyses are pursued
- Variables sensitive to diboson system (mass/transverse mass)

aQGCs Limits From Shown Final States

	Observed	Expected	Observed	Expected	Observed	Expected
	$W^{\pm}W^{\pm} + WZ$	$W^{\pm}W^{\pm} + WZ$	$\mathbf{Z}\mathbf{Z}$	$\mathbf{Z}\mathbf{Z}$	$W\gamma$	$W\gamma$)
	(TeV^{-4})	(TeV^{-4})	(TeV^{-4})	(TeV^{-4})	(TeV^{-4})	(TeV^{-4})
$f_{\rm T0}/\Lambda^4$	[-0.25, 0.28]	[-0.35, 0.37]	[-0.24, 0.22]	[-0.37, 0.35]	[-0.6, 0.6]	[-0.6, 0.6]
$f_{\rm T1}/\Lambda^4$	[-0.12, 0.14]	[-0.16, 0.19]	[-0.31, 0.31]	[-0.49, 0.49]	[-0.4, 0.4]	[-0.3, 0.4]
f_{T2}/Λ^4	[-0.35, 0.48]	[-0.49, 0.63]	[-0.63, 0.59]	[-0.98, 0.95]	[-1.0, 1.2]	[-1.0, 1.2]
f_{T5}/Λ^4	_	_	_	_	[-0.5, 0.5]	[-0.4, 0.4]
f_{T6}/Λ^4	_	_	_	_	[-0.4, 0.4]	[-0.3, 0.4]
$f_{\rm T7}/\Lambda^4$	_	_	_	_	[-0.9, 0.9]	[-0.8, 0.9]
f_{T8}/Λ^4	_	—	[-0.43, 0.43]	[-0.68, 0.68]	_	_
f_{T9}/Λ^4	_	_	[-0.92, 0.92]	[-1.50, 1.50]	_	_
$f_{\rm M0}/\Lambda^4$	[-2.7, 2.9]	[-3.6, 3.7]	_	_	[-8.1, 8.0]	[-7.7, 7.6]
$f_{\rm M1}/\Lambda^4$	[-4.1, 4.2]	[-5.2, 5.5]	_	_	[-12, 12]	[-11, 11]
$f_{\rm M2}/\Lambda^4$	_	—	_	_	[-2.8, 2.8]	[-2.7, 2.7]
$f_{\rm M3}/\Lambda^4$	_	_	_	_	[-4.4, 4.4]	[-4.0, 4.1]
$f_{\rm M4}/\Lambda^4$	_	—	_	_	[-5.0, 5.0]	[-4.7, 4.7]
$f_{\rm M5}/\Lambda^4$	_	—	_	_	[-8.3, 8.3]	[-7.9, 7.7]
$f_{\rm M6}/\Lambda^4$	[-5.4, 5.8]	[-7.2, 7.3]	_	_	[-16, 16]	[-15, 15]
$f_{\rm M7}/\Lambda^4$	[-5.7, 6.0]	[-7.8, 7.6]	_	_	[-21, 20]	[-19, 19]
$f_{\rm S0}/\Lambda^4$	[-5.7, 6.1]	[-5.9, 6.2]	_	_	_	_
$f_{\rm S1}/\Lambda^4$	[-16, 17]	[-18, 18]	_	_	_	_

Competitive sensitivity among different final states

• $W^{\pm}W^{\pm} + WZ$ & ZZ (W γ) analyses: 2016-18 (2016)

- Results obtained without using any unitarization procedure, results taking into account unitarization limit in back-up
- Best stringent limits to date using semileptonic final states (SMP-18-006 / PLB 798 (2019)134985)

Summary of EW $\sigma_{exp}/\sigma_{theo}$ Measurements

Summary

- ▶ Presented study of electroweak scattering of W[±]W[±]jj, WZjj, ZZjj, & Wγjj bosons in leptonic final states
 - \blacktriangleright first $W^\pm W^\pm$ polarization cross section measurements
- ► Observation of EW WZjj & Wγ production, evidence of EW ZZjj production
- Measured inclusive cross sections of the W[±]W[±]jj, WZjj, ZZjj, & Wγjj processes in fiducial regions dominated by EW production
- Measured differential cross sections of W[±]W[±]jj & WZjj processes on several distributions for first time
- Limits on dimension-8 Wilson coefficients are set for anomalous couplings
- This is just the starting point of a long physics program:

・ロト・(型ト・ミト・ミト・ミー のへぐ

- study additional final states
- increase scope of polarization measurements
- finer differential measurements
- expand EFT analyses
- expand searches using these final states

Documentation

- All results available on http://cms-results.web.cern.ch/cmsresults/public-results/publications/SMP/index.html
- ▶ W[±]W[±]jj/WZjj in lepton final states: SMP-19-012 / PLB 809 (2020) 135710
 - $\blacktriangleright\,$ polarized $W^\pm W^\pm jj$ measurements: SMP-20-006 / arXiv:2009.09429

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ・ つへで

- ZZjj: SMP-20-001 / arXiv:2008.07013
- VVjj in semileptonic final states: SMP-18-006 / PLB 798 (2019)134985
- ► Zγjj: SMP-18-007 / JHEP 06 (2020) 076
- ► Wγjj: SMP-19-008 / arXiv:2008.10521
- Zjj: SMP-16-018 / EPJC 78 (2018) 589
- Wjj: SMP-13-012 / JHEP 11 (2016) 147

Back-Up

Other Distributions in $W^{\pm}W^{\pm}jj$ SR (I)

Example of distributions not directly used in the main fit

イロン イヨン イヨン イヨン

Э

Other Distributions in $W^{\pm}W^{\pm}jj$ SR (II)

Other Distributions in WZjj SR (I)

イロン イヨン イヨン イヨン

Э

Good agreement between data and prediction

Other Distributions in WZjj SR (II)

$p_{\mathrm{T}}^{\ell \ max} \ \mathrm{W}^{\pm}\mathrm{W}^{\pm}\mathrm{jj}$ Fiducial Cross Section Measurements

• Performed by replacing $m_{\ell\ell}$ to $p_{\rm T}^{\ell max}$ in the fit

<u>VBF $H^{\pm\pm}$ and H^{\pm} Searches (Georgi-Machacek Model)</u>

- Same VBS topology in resonant production
- Searching for enhancements in diboson mass-related observables
- Limits as a function of m_H and s_H (theory parameter relating the W boson and the vacuum expectation value of the triplet fields)

NLO Corrections

- The full NLO QCD and EW corrections for the leptonic unpolarized W[±]W[±] scattering have been computed B.Biedermann, A.Denner, and M.Pellen <u>arXiv:1611.02951 arXiv:1708.00268</u>
- Reduce the LO cross section for the EW W[±]W[±] process by approximately 10–15%
- Unknown for LL, LT, TT processes
 - α_s corrections expected to be the same for all the 3 polarization modes
 - α corrections expected to be small for the L mode
 - * Take the NLO corrections for the unpolarized EW $W^{\pm}W^{\pm}$ and apply
 - $\mathcal{O}(\alpha_{s}\alpha^{6})$ and $\mathcal{O}(\alpha^{7})$ to **TT**
 - Only $O(\alpha_s \alpha^6)$ to LL and LT
 - $\mathcal{O}(\alpha^7)$ on the shapes of LL and LT considered as a systematic uncertainty

LO	$\mathcal{O}(\alpha$	6) O($(\alpha_{\rm s} \alpha^5)$ $O(c$	$\alpha_{\rm s}^2 \alpha^4$	
	FWO			\backslash	
	EW Q	CDO EW	QCD	2CD	
NLO	$\mathcal{O}(\alpha^7)$	$\mathcal{O}(\alpha_{\rm s}\alpha^6)$	$\mathcal{O}(lpha_{ m s}^2 lpha^5)$	${\cal O}(lpha_{ m s}^3lpha^4)$	
Order	$\mathcal{O}(\alpha^7)$	$\mathcal{O}(lpha_{ m s} lpha^6)$	$\mathcal{O}(lpha_{ m s}^2 lpha^5)$	$\mathcal{O}(lpha_{ m s}^3 lpha^4)$	Sum
$\delta\sigma_{\rm NLO}$ [fb]	-0.2169(3)	-0.0568(5)	-0.00032(13)	-0.0063(4)	-0.2804(7)
$\delta\sigma_{ m NLO}/\sigma_{ m LO}$ [%]	-13.2	-3.5	0.0	-0.4	-17.1

Closure of Signal Samples

$W^{\pm}W^{\pm}$ Polarization Distributions

Unitarity Violation

from ArXiv:0806.4145

▶ Without a "light" SM Higgs boson ($m_{
m H} \leq 1 \, {
m TeV}$) VBS would violate unitarity

▶ Higgs boson contribution cancels increase for large \sqrt{s} for SM-HWW coupling

Source of uncertainty	$W_{L}^{\pm}W_{L}^{\pm}$ (%)	$W_X^{\pm}W_T^{\pm}$ (%)	$W_{L}^{\pm}W_{X}^{\pm}$ (%)	$W_{\rm T}^{\pm}W_{\rm T}^{\pm}$ (%)
Integrated luminosity	3.2	1.8	1.9	1.8
Lepton measurement	3.6	1.9	2.5	1.8
Jet energy scale and resolution	11	2.9	2.5	1.1
Pileup	0.9	0.1	1.0	0.3
b tagging	1.1	1.2	1.4	1.1
Nonprompt lepton rate	17	2.7	9.3	1.6
Trigger	1.9	1.1	1.6	0.9
Limited sample size	38	3.9	14	5.7
Theory	6.8	2.3	4.0	2.3
Total systematic uncertainty	44	6.6	18	7.0
Statistical uncertainty	123	15	42	22
Total uncertainty	130	16	46	23

Statistically limited measurements

aQGCs: Unitarity Issue

- EFT amplitudes grow with m_{VV} and this growth is unphysical above a certain scale Λ; this sets the limit of validity of EFT approach
- This scale derived from partial wave unitarity condition (as function of Wilson coefficients)
- Above Λ, since the data is consistent with SM, we replace prediction of EFT amplitudes with SM in that region; this leads to conservative bounds on EFT Wilson coefficients
- The technique is known as "Clipping", and essentially means using EFT only in the region it is valid
 - first time limits are also reported in this way
- See details in Arxiv.1906.10769 and Arxiv.1802.02366

	Observed (W [±] W [±])	Expected (W [±] W [±])	Observed (WZ)	Expected (WZ)	Observed	Expected				
	(TeV^{-4})	(TeV^{-4})	(TeV^{-4})	(TeV^{-4})	(TeV^{-4})	(TeV^{-4})				
f_{T0}/Λ^4	[-0.28, 0.31]	[-0.36, 0.39]	[-0.62, 0.65]	[-0.82, 0.85]	[-0.25, 0.28]	[-0.35, 0.37]				
f_{T1}/Λ^4	[-0.12, 0.15]	[-0.16, 0.19]	[-0.37, 0.41]	[-0.49, 0.55]	[-0.12, 0.14]	[-0.16, 0.19]				
f_{T2}/Λ^4	[-0.38, 0.50]	[-0.50, 0.63]	[-1.0 , 1.3]	[-1.4, 1.7]	[-0.35, 0.48]	[-0.49, 0.63]				
$f_{\rm M0}/\Lambda^4$	[-3.0, 3.2]	[-3.7, 3.8]	[-5.8, 5.8]	[-7.6, 7.6]	[-2.7, 2.9]	[-3.6, 3.7]				
$f_{\rm M1}/\Lambda^4$	[-4.7, 4.7]	[-5.4, 5.8]	[-8.2, 8.3]	[-11, 11]	[-4.1, 4.2]	[-5.2, 5.5]				
f_{M6}/Λ^4	[-6.0, 6.5]	[-7.5, 7.6]	[-12, 12]	[-15, 15]	[-5.4, 5.8]	[-7.2, 7.3]				
$f_{\rm M7}/\Lambda^4$	[-6.7, 7.0]	[-8.3, 8.1]	[-10, 10]	[-14, 14]	[-5.7, 6.0]	[-7.8, 7.6]				
$f_{\rm S0}/\Lambda^4$	[-6.0, 6.4]	[-6.0, 6.2]	[-19, 19]	[-24, 24]	[-5.7, 6.1]	[-5.9, 6.2]				
$f_{\rm S1}/\Lambda^4$	[-18, 19]	[-18, 19]	[-30, 30]	[-38, 39]	[-16, 17]	[-18, 18]				

Results without using any unitarization procedure

Results by cutting the EFT expansion at the unitarity limit

	Observed (W [±] W [±])	Expected ($W^{\pm}W^{\pm}$)	Observed (WZ)	Expected (WZ)	Observed	Expected
	(TeV ⁻⁴)	(TeV ⁻⁴)	(TeV^{-4})	(TeV ⁻⁴)	(TeV^{-4})	(TeV^{-4})
f_{T0}/Λ^4	[-1.5, 2.3]	[-2.1, 2.7]	[-1.6, 1.9]	[-2.0, 2.2]	[-1.1, 1.6]	[-1.6, 2.0]
f_{T1}/Λ^4	[-0.81, 1.2]	[-0.98, 1.4]	[-1.3, 1.5]	[-1.6, 1.8]	[-0.69, 0.97]	[-0.94, 1.3]
f_{T2}/Λ^4	[-2.1, 4.4]	[-2.7, 5.3]	[-2.7, 3.4]	[-4.4, 5.5]	[-1.6, 3.1]	[-2.3, 3.8]
$f_{\rm M0}/\Lambda^4$	[-13, 16]	[-19, 18]	[-16, 16]	[-19, 19]	[-11, 12]	[-15, 15]
$f_{\rm M1}/\Lambda^4$	[-20, 19]	[-22, 25]	[-19, 20]	[-23, 24]	[-15, 14]	[-18, 20]
$f_{\rm M6}/\Lambda^4$	[-27, 32]	[-37, 37]	[-34, 33]	[-39, 39]	[-22, 25]	[-31, 30]
$f_{\rm M7}/\Lambda^4$	[-22, 24]	[-27, 25]	[-22, 22]	[-28, 28]	[-16, 18]	[-22, 21]
$f_{\rm S0}/\Lambda^4$	[-35, 36]	[-31, 31]	[-83, 85]	[-88, 91]	[-34, 35]	[-31, 31]
$f_{\rm S1}/\Lambda^4$	[-100, 120]	[-100, 110]	[-110, 110]	[-120, 130]	[-86, 99]	[-91, 97]