

ICPPA - Moscow, Oct. 6-9, 2015

INFN Astroparticle Projects in collaboration with Russia

Prof. Marco Pallavicini

Chair of INFN Astroparticle and Fundamental Physics Commission II

Università di Genova & INFN

The INFN

- The National Institute for Nuclear Physics (INFN) is the Italian research agency dedicated to the study of the fundamental constituents of matter
 - Managed under supervision of Ministry of Education (MIUR)
 - It conducts theoretical and experimental research in the fields of subnuclear, nuclear and astro-particle physics.
 - Funded: 1951
 - 4 National Laboratories
 - Frascati, Gran Sasso, Legnaro, Catania
 - 20 Directors for 20 regional divisions
 - 6 Foundations or External Structures

INFN SCIENTIFIC ORGANIZATION

• INFN [3670 Full Time Equivalent (FTE), research staff + university associates]

Five "	Commissioni	Scientifiche	Nazionali'
LIVE	commonor	ottentente	1 uzionan

CSN1 : Particle Physics with Accelerators	19.8 M€	796 FTE	\
CSN2: Astroparticle and Fundamental Physics	12.3+9 M€	726 FTE	
CSN3: Nuclear Physics	9.2 M€	494 FTE	2015
• CSN4: Theory	2.7 M€	991 FTE	
CSN5: Technology	5.3 M€	663 FTE	/

• CSN2: Astroparticle and Fundamental Physics

- 4 main areas of scientific activity (new structure, 2015)
 - 1) Neutrino Physics
 - 2) Radiation from the Universe
 - 3) The Dark Universe
 - 4) Gravitational Waves, Gravity and Quantum Physics

CSN2: Astroparticle and Fundamental Physics

• Four areas of research....

Neutrino Physics

Radiation from the Universe

Gravitational waves, Gravity and Quantum Physics

The Dark Universe

CSN2: Astroparticle and Fundamental Physics

• Four areas of research... with **solid long standing collaboration** with **Russian** institutions and Dubna International Laboratory

Many diverse places

Neutrino Physics

BOREXino (@LNGS)

- A liquid scintillator detector for solar and geo-neutrinos
- ~ 20 years of collaboration on a very successful project
 - Kurchatov, DUBNA, St. Petersburg, Moscow University (and Kiev)
 - A substantial contribution to construction, data acquisition and data analysis
- BOREXino main results (see 6 talks in the afternoon!)

Before Borexino (2006)

After Borexino (2015)

Moscow, Oct.6th, 2015

Marco Pallavicini - Università di Genova & INFN

GERDA (@LNGS) $T_{1/2}^{0\nu} > 2.1 \ 10^{25} \text{ y}$ frequentist $T_{1/2}^{0\nu} > 1.9 \ 10^{25} \text{ y}$ bayesian

- Legacy of Moscow-Heidelberg experiments
- Successful completion of Phase I
 - End data taking 21-05-2013
 - Combined with HdM + IGEX
 - $p_value = 2.10^{-4}$
 - Klapdor's claim strongly disfavoured
- Phase 2 under completion
 - More mass (detectors done!)
 - Less background (10 times)
 - Improvements in LAr veto
 - Data taking with ~30 kg in a few months

Scintillating Bolometers for 0vBB

- Current generation of **bolometer** experiments are background limited
 - Option: use scintillation light to reduce α background
 - Test with 20 + 40 crystals (20 @ Modane)
 - Possible technology for a CUORE upgrade
 - A nice opportunity for stronger collaboration with Russian groups

ZnSe crystals (82 Se at 95%)

Moscow, Oct.6th, 2015

Emitted

Marco Pallavicini - Università di Genova & INFN

SOX

- A nice re-use of BOREXino detector
 - Search for sterile neutrinos by means of an artificial anti-neutrino (and maybe in the future neutrino) source
 - ¹⁴⁴Ce anti-neutrino source made in Russia
 - INFN-CEA project with active role of Russian industry and scientists
- Similar proposal exists in Russia with SAGE detector
 - ⁵¹Cr neutrino source
- Several talks (including my own) in the afternoon on SOX

The Dark Universe

The Dark Universe

Moscow, Oct.6th, 2015

Marco Pallavicini - Università di Genova & INFN

Dama Libra

- ~250 kg NaI scintillator crystals
 - Low threshold (2 keV published, 1 keV data taking in progress)
 - Long standing model independent signal
 - No credible interpretation beyond Dark Matter signature BUT
 - Difficult to reconcile with other experiments assuming naïve WIMP or simple electromagnetic interactions (LUX, Xenon-100)

See R. Bernabei's talk

Darkside-50 kg (future 20t)

- 50 kg LAr bi-phase detector operated with low
 ³⁹Ar and liquid scintillator neutron veto
 - Zero background goal achieved
 - 20 t phase under discussion
 - Key contribution from Russia: low background titanium cryostat
 - See several talks on Thursday for details

Moscow, Oct.6th, 2015

Flying detectors

AGILE, 23-4-2006 Mainly X and γ

FERMI, I I-6-2008 Brand new γ sky, but also electrons AMS-02,11-6-2011 Charged particles up to 1 TeV

- Among these, Pamela is a nice example of strong joint INFN-Russia collaboration
 - Silicon detectors technology: know how from long standing accelerator experience
 - Data analysis, Detector simulations
 - Leading role (P.I. Piergiorgio Picozza)

Pamela

- Launch 15-6-2006 from Baikonur
 - Stable operation in RESURS-DK1 satellite
 - Conditions are getting worse, but still usable after 9 y in space !
- A very successful experiment
 - Pamela results on DM all confirmed by AMS-02
 - Several talks on Friday on all results obtained in 9 y of data

Moscow, Oct.6th, 2015

Marco Pallavicini - Università di Genova & INFN

Future space detectors

- Follow up of Agile-Pamela-Fermi-AMS02
 - Dampe (China)
 - Important synergy with CAS. Chinese fundings.
 - 2 GeV 10 TeV e/ γ 30 GeV 100 TeV CR
 - Almost ready to fly
 - Gamma-400 (killed ???)
 - Tracker + Innovative calorimetry (CaloCube)
 - 100 MeV 1 TeV e/γ 2% energy resolution,
 10 TeV e⁻ Light nuclei up to the knee 1000 TeV
 - Excellent hadron / electron separation
 - High acceptance calorimeter
 - HERD
 - INFN R&D effort just starting now

A dream: observation of CR from space

- A 20 y old dream
 - Fluorescence and Cherenkov detection of CR air showers from space
 - AirWatch, EUSO, JEM-EUSO all dead....
 - Is there a future ?
- Next step: MiniEuso on ISS-Russia ?

High energy neutrinos

- After Ice Cube discovery, increased interest for a high energy neutrino observatory in the Mediterranean
 - **24 M€** investment close to completion.
 - 8 towers and 24 strings will be deployed in water in 2015/2016
 - New fundings necessary to complete
 - Proposal for additional regional fundings under discussion
- Synergy with Toulon site on **ORCA**
 - ORCA may find neutrino hierarchy, if done on time
 - Waiting for good news from France

Neutrinos

- Low energy neutrinos (solar, SN, terrestrial) covered by **Borexino** / **LVD at LNGS**
- Deep sea detectors for:
 - Neutrino astronomy in the Mediterranean: Km3Net
 - Atmospheric neutrinos (hierarchy): **ORCA**
- Both high priority, only partially funded so far
 - Work in progress

Moscow, Oct.6th, 2015

Optical Module

Gravitational waves

- Step 1: we need discovery!
 - Virgo-Ligo Adv. program almost ready to go
- Step 2: Birth of GW astrophysics
 - How many events with Adv detectors ?
 - Large uncertainty: 0.4 < events < 400 y
 - Future
 - Einstein Telescope for relatively high frequency observatory
 - LISA-PF ready for launch: key step toward low frequency observatory
- Multi-messenger observation with GW might be real in the next decade
 - Joint effort with optical, radio, γ, neutrino detectors
- R&D effort for new technologies (atom interferometry on ground or space)

Virgo Advanced

- One of the main INFN efforts
 - EGO + CSN2
 - Strong synergy and agreement with LIGO
 - ~ 8M€/y
 - We must find waves Ready for data in 2016

LISA-PF

- Goal: validate the concept of "no-touch" satellite
- Two Au-Pt masses in the same satellite
 - One free falling, the second one controlled by low-frequency electrostatic system
 - Launch in Dec. 2015

Conclusions

- A long standing and fruitful collaboration in many diverse fields of research
 - Large Russian contribution to Gran Sasso experiments especially, but also to many other
 - A rich menu of new projects for future even more intense collaboration

Thanks