

CNO and pep solar neutrino measurements and perspectives in Borexino ICPPA October 6th, 2015

> Stefano Davini on behalf of Borexino Gran Sasso Science Institute

Talk outline

Detection of pep and CNO solar neutrinos in Borexino-I

- Motivation of the measurement
- Cosmogenic backgrounds rejection
- Analysis
- Results

Prospects for Borexino-II

pep and CNO solar neutrinos

p-e-p process, in **proton-proton** chain **Mono-E** neutrinos **E=1.44 MeV** Low flux (1/400 total solar flux) *but* predicted with **high accuracy** Expected rate in BX ~ 3 cpd/100tons

C-N-O cycle Neutrinos from ¹³N and ¹⁵O decay **Continous spectrum Q = 1.74 MeV** Low flux, predicted with low accuracy, **sensibile** to Solar **metallicity** Expected rate in BX ~ 3-5 cpd/100tons

Why measure pep neutrinos?

pep neutrino **flux** predicted by *Standard Solar Model* with **high accuracy** (1.2%)

pep neutrino energy (1.44 MeV) in Pee vacuum-matter transition region

Precision test of MSW effect and oscillation models

Why measure CNO neutrinos?

Proof that CNO cycle happens in Sun

Abbundance of heavy elements in Sun have great impact on CNO neutrino flux magnitude

Test of Solar Models (HighZ vs LowZ)

Serenelli, Haxton, Pena-Garay arXiv 1104.1639	CNO Flux (10 ⁸ cm ⁻² s ⁻¹)
HIGH Z SSM	5.24 ± 0.84
LOW Z SSM	3.76 ± 0.60
$\Delta \Phi$	28%

pep and CNO neutrino detection in Borexino-I

Low signal: few events/day/100tons Dominant background: cosmogenic β+ emitter ¹¹C 27cpd/100tons → signal/background ~ 0.1 Need techniques to suppress ¹¹C background: Three Fold Coincidence e⁺/e⁻ pulse shape discrimination

Suppress ¹¹C -Three Fold Coincidence

$$\mu$$
 + ¹²C \rightarrow μ + ¹¹C + n

~4300 muons/day in Borexino

Spallation neutron in 95% cases n termalize and captured, mean life ~250 μs capture on $H \rightarrow \gamma$ (2.2 MeV)

¹¹C decays β+ mean life 29.4 minutes Stays where produced (no convective motions)

Space-time correlation between **muon** track, **neutron** capture, ¹¹C decay: **Three Fold Coincidence (TFC)**

We exclude from analysis space-time regions where we expect ¹¹C decays

Suppress ¹¹C -Three Fold Coincidence

Removed **91%** ¹¹C, keeping **48.5%** scintillation events ¹¹C rate: **27** \rightarrow **2.5** cpd/100tons

e⁺/e⁻ discrimination

Distribution of scintillation time signal for e+ delayed with rispect to e-[Phys. Rev. C 83, 0105504]

Ortho-positronium formation
in 50% cases, 3 ns mean life
different event topology

We use such difference to discriminate e+/e- events

e⁺/e⁻ Pulse Shape Discrimination

Development of Pulse Shape Discrimination variables to discriminate β-β+(11C) events

PS parameter using Boosted Decision Tree (using pure ¹¹C sample for training)

pep-CNO neutrino rate measurment: analysis strategy

Multivariate maximum likelihood test to event distribution

Considering: energy distributions radial distribution e+/e- pulse shape (PS-BDT) distribution

Both ¹¹C-subtracted and ¹¹C-vetoed energy spectra

Likelihood maximized at the same time on different variables: $L_{TOT} = L_{ENE} L_{RAD} L_{e+\!/\!e-}$

Phys.Rev. D 89 (2014) 112007

Fit to energy spectrum

Fit to energy spectrum in FV for TFC-tagged events

Multivariate Fit

Fit to energy spectrum in FV after TFC veto

Multivariate Fit

Fit to energy spectrum in FV after TFC veto

Events

First direct measurement pep v rate

3.1 ± 0.6_{stat} ± 0.3_{syst} counts/day/100tons

PRL 108 (2012) 051302

Strongest limit on CNO neutrino rate

Limit (95% CL) <7.1_{stat} counts/day/100tons

$\Delta \chi^2$ profile pep – CNO rate

pep and CNO solar v flux

ν	Interaction rate	Solar- ν flux	Data/SSM
	[counts/(day-100 ton)]	$[10^{8} \text{cm}^{-2} \text{s}^{-1}]$	ratio
pep	$3.1\pm0.6_{\rm stat}\pm0.3_{\rm syst}$	1.6 ± 0.3	1.1 ± 0.2
CNO	$< 7.9 \ (< 7.1_{\rm statonly})$	< 7.7	< 1.5

PRL 108 (2012) 051302

Internal ²¹⁰Bi background

Only **residual** radioactive internal **background** in **pep-CNO** region of interest→ ²¹⁰Bi decay (~54 cpd/100ton) ²¹⁰Bi spectal shape **similar** to e- recoil spectrum from **CNO CNO** neutrino **spectroscopy** is **tough**

Background levels in Borexino-II

Isotope	Typical abundance (source)	Borexino goals	Borexino-I	Borexino-II
¹⁴ C / ¹² C, g/g	10 ⁻¹² (cosmogenic)	~10 ⁻¹⁸	2.7·10 ⁻¹⁸	2.7·10 ⁻¹⁸
²³⁸ U, g/g (²¹⁴ Bi- ²¹⁴ Po)	10 ⁻⁶ -10 ⁻⁵ (dust)	~10 ⁻¹⁶ (1 µБк /т)	(1.6±0.1)·10 ⁻¹⁷	<9.7· 10 ⁻¹⁹ (95%)
²³² Th, g/g (²¹² Bi- ²¹² Po)	10 ⁻⁶ -10 ⁻⁵ (dust)	~ 10 ⁻¹⁶	(6.8±1.5)· 10 ⁻¹⁸	<1.2· 10 ⁻¹⁸ (95%)
²²² Rn (²³⁸ U), ev/d/100 t	100 atoms/cm ³ (air)	10	1	0.1
⁴⁰ K, g[K _{nat}]/g	2·10⁻ੰ (dust)	~10 ⁻¹⁵	<1.7·10 ⁻¹⁵ (95%)	
²¹⁰ Po, ev//d/t	Surface contamination	~10 ⁻²	80 (initial), T _{1/2} =134 days;	2
²¹⁰ Bi, ev/d/100 t	Inequilibrium with 222Rn or 210Pb	Not specified	20-70	~20
⁸⁵ Kr ev/d/100 t	1 Бк/м ³ (technogenic, air)	~1	30.4±5 cpd/100t	< compatble with 0
³⁹ Ar ev/d/100 t	17 mБк/м ³ (cosmogenic in air)	~1	<< ⁸⁵ Kr	

Conclusions and Outlook - I

Borexino is the first experiment to perform solar neutrino spectroscopy at low energy (<2 MeV)

Implication of the measurements important for Stellar Astropysics (Solar Standard Model) and Neutrino Physics (masses, mixing, oscillation, beyond SM)

Conclusions and Outlook - II

First direct measurement of **pep** solar neutrino **rate**: direct measurment of **Pee** at *E=1.44 MeV* probes **MSW-LMA** in **transition** region

Best limits on **CNO** solar neutrino **flux**: test of Solar **Metallicity** in agreement with **S**olar **S**tandard **M**odels

Conclusions and Outlook - III

Borexino Phase-II (2012-present) ongoing

Internal radioactive **backgrounds** much **lower** than in Phase-I

Analysis ongoing, inproving all aspects of analysis

-0.6 -0.4 -0.2 0 0.2 Pulse shape parameter Backup slides

Short history of solar neutrino experiments

```
70's-80's: Homestake (R. Davies)
```

- radiochemical experiment: $v_e^+ {}^{37}CI \rightarrow {}^{37}Ar + e^- (E_v^- > 1.4 \text{ MeV})$
- \checkmark Deficit observed \rightarrow new physics or Solar Model unaccurate?

Nobel prize 2002

```
80's-90's: (Super) KamioKande
```

- ~ Confirm deficit on ⁸B ν (E> ~5MeV)
- Direction of solar neutrinos

90's: Gallex (GNO), Sage

- Radiochemical experiment: $v_e + {}^{71}Ga \rightarrow {}^{71}Ge + e^-$ (E > 200 keV)
- \sim Observed deficit on pp v (low energy)
- \checkmark Calibrazion with neutrino souce \rightarrow real effect

2001: SNO

- > Separate detection of v_e and $v_{\mu,\tau}$
- Confirm flavor transition of solar neutrinos
- ✓ Total flux agrees with Standard Solar Model

Why measure solar neutrinos? - II

Measure solar neutrino flux \rightarrow test Solar Standard Model

Astro-ph probe: neutrinos allow to look at the Sun's core
 Solve solar metallicity problem

Tension between High Metalliciy (High Z) and Low Metallicity (Low Z) Solar Models

>**High Z (GS)** \rightarrow older model, higher heavy element abundances, agrees with helioseismology measurments

>Low Z (AGSS) \rightarrow recent model based on new solar atmosphere optical spectroscopy measurments, lower heavy element abundances, in disagreement with helioseismology

Reaction	Abbr.	Flux (cm $^{-2}$ s $^{-1}$)
$pp ightarrow d e^+ u$	pp	$5.97(1\pm0.006)\times10^{10}$
$pe^-p ightarrow d u$	pep	$1.41(1\pm 0.011)\times 10^8$
$^{3}\mathrm{He}p ightarrow ^{4}\mathrm{He}e^{+}\nu$	hep	$7.90(1\pm0.15) imes10^3$
$^{7}\text{Be} e^{-} \rightarrow ^{7}\text{Li} \nu + (\gamma)$	$^{7}\mathrm{Be}$	$5.07(1\pm0.06) imes10^9$
$^8\mathrm{B} \to {}^8\mathrm{Be}{}^*~e^+\nu$	^{8}B	$5.94(1 \pm 0.11) \times 10^{6}$
${\rm ^{13}N} \rightarrow {\rm ^{13}C}~e^+\nu$	^{13}N	$2.88(1 \pm 0.15) \times 10^8$
${\rm ^{15}O} \rightarrow {\rm ^{15}N}~e^+\nu$	^{15}O	$2.15(1^{+0.17}_{-0.16}) \times 10^8$
${}^{17}\mathrm{F} \rightarrow {}^{17}\mathrm{O}~e^+\nu$	$^{17}\mathrm{F}$	$5.82(1^{+0.19}_{-0.17}) \times 10^6$

pp, pep neutrino flux: predicted with SMALL uncertainties

CNO neutrino flux: predicted with BIG uncertinties

The Borexino detector

Ultrapure organic liquid scintillator

~278 tons of scintillator (PC) ~75 tons of fiducial mass

~2200 PMTs on the SSS

External Water Tank

shielding for n and γ Cherenkov detector for μ

External Background

- Radioactive decays in peripheral structure: ²⁰⁸TI from PMTs...
- Fiducial Volume:

minimize γ -rays without sacrifice too many events

- Spatial distribution external bkg \rightarrow NON homogeneus
- Spatial distribution internal bkg and $\mathbf{v} \rightarrow homogeneus$
- Spatial distribution from Monte Carlo simulation and external calibration source (²²⁸Th)

Multivariate Fit – radial distribution

Fit to energy spectrum in FV after TFC veto

0.5

1

1.5

2

Event radial position / m

2.5

pep systematics

- Float fit **parameters** (binning, range...)
- Detector response, energy scale
- Uncertainty in ²¹⁰Bi energy spectrum
- γ in **PS-BDT** distribution
- Low statistics for PS-BDT training
- Fiducial Volume, position recostruction
- Fixed species in the fit (pp and ⁸B nu, ²¹⁴Po)
- Impact of short lived cosmogenics

Total systematic uncertainty in pep rate: 10%