

Recent SM measurements with the ATLAS detector

Jiri Hejbal on behalf of the ATLAS Collaboration

ICPPA 2015, Moscow, Russia

Introduction

Standard Model measurements performed to:

- validate SM in new energy regime
- constrain parton distribution functions (PDFs)
- understand processes which are backgrounds for other studies
- improve precision of known SM parameters
- constrain new physics contributions (like anomalous couplings)

Selection of recent SM results, based on the categories:

Soft QCD

Exclusive γγ →II production, charged-particle multiplicities, Inelastic pp cross section at 13 TeV

W/Z/gamma production

W and Z Boson production,
 W+jets / Z+jets cross section ratio,
 W+jets and Z+bjets production

Jet physics

Inclusive jet, three and four-jet production, QCD coupling constant measurement

EWK measurements

WW, 4-lepton, Vector boson fusion,
 Vector Boson Scattering, Wγγ production

Standard model measurements

Two photon scatering – $\gamma\gamma \rightarrow ll$

elastic signal

dissociative backgrounds

- use LHC as a two-photon collider
- use Equivalent Photon Approximation (EPA) (with absorbtive corrections for finite proton size)
- other background: Z/γ*, diboson, tt and multi-jet production
- observed cross-sections are about 20% below the nominal EPA prediction
- consistent with the suppression due to reabsorption of photon into proton

Physics Letters B 749 (2015) 242-261

Charged particle multiplicities

- Inclusive charged-particle measurements in pp collisions provide insight into the strong interaction in the low energy, non-perturbative QCD region
- Compare different generators (with different parton showers) and different tunes
- MC tunes describe the data reasonably well at this new centre-of-mass energy

Inelastic pp cross section at 13 TeV

The measurement is performed using scintillators mounted in front of the forward calorimeters: Minimum Bias Trigger Scintillators (MBTS)

- Measurement performed in fiducial region: $\tilde{\xi} = M_X^2 / s > 10^{-6}$ (MBTS efficiency is above 50%)
- M_x = larger of the dissociation masses

ATLAS-CONF-2015-038

Fiducial cross section:

 $\sigma^{\rm fid} = 65.2 \pm 0.8(\text{exp.}) \pm 5.9(\text{lumi}) \text{ mb}$

(uncertainty of the luminosity is 9%)

Total cross section:

 $\sigma^{\text{total}} = 73.1 \pm 0.9(\text{exp.}) \pm 6.6(\text{lumi}) \pm 3.8(\text{extr.}) \text{ mb}$

Extrapolation from fid. to full $\widetilde{\xi}$ phase space

Results are about $1\sigma - 1.5\sigma$ below the theoretical predictions currently available

Jet production at 7 TeV

Inclusive production

- Jets are defined by anti- k_{τ} algorithm (R=0.4, 0.6): 0.1 < p_T < 2 TeV
- Data are compared to fixed-order NLO pQCD (corrected for both perturbative effect and electroweak effect) as well as NLO ME+PS

Three-jet production

- Jets with 3-j mass up to 5 TeV
- Probed (mjjj, |Y*|) plane with a variety of PDFs
- Data are well described by pQCD at NLO (corrected for non perturbative effects)

JHEP02(2015)153

Four jets production at 8 TeV

- Measurement of differential cross sections for events with at least four jets (as a function of the jet momenta, invariant masses and various angular variables)
- Test of prediction at
 - LO: PYTHIA, HERWIG and MADGRAPH+PYTHIA
 - NLO pQCD: Blackhat/Sherpa and Njet/Sherpa
 - HEJ: exclusive MC generator, based on approximate all-orders calculations (for $n_{iet} \ge 2$)

H_T (scalar sum of jet p_T) is well described by both NLO and HEJ

 m_{4j} is well described by NLO up to 3 TeV and by HEJ at high masses. NLO uncertainties are relatively large, O(30%) at low momenta

Inclusive Jets cross-section at 13 TeV

- Preliminary results on the inclusive-jet cross section using 78 pb⁻¹ of data at 13 TeV
- Differential measurement as a function of
 - jet transverse momentum: 346 < p_T^{jet} < 838 GeV
 - jet rapidity range of $|y^{jet}| < 0.5$
- Data unfolded to particle-level using modified Bayesian technique
- NLO pQCD predictions are consistent with the data

Jet physics – α_s measurement

- Transverse energy-energy correlation (TEEC) exhibit a quadratic dependence on the strong coupling constant
- Measurements of the angular distributions of jet pairs weighted by $E_T^1 E_T^2 / (\Sigma E_T)^2$:

$$\frac{1}{\sigma} \frac{d\Sigma}{d(\cos \phi)} = \frac{1}{\sigma} \sum_{ij} \int \frac{d\sigma}{dx_{Ti} dx_{Tj} d(\cos \phi)} x_{Ti} x_{Tj} dx_{Ti} dx_{Tj}$$

where $x_{Ti} = E_{Ti}/E_{T}$ and $E_{T} = \sum_{i} E_{Ti}$

Analysis strategy:

- 158 pb⁻¹ of data @ 7 TeV
- ▶ $p_T^1 + p_T^2 > 500 \text{ GeV}; p^{(all)}_T > 50 \text{ GeV}; |y(jet)| < 2.5$
- Total uncertainty is about 5%, dominated by the jet energy scale, pileup and MC parton-shower modeling.
- Pythia/Alpgen predictions agree reasonably well with data, Herwig++ deviates from data by up to 20%

Jet physics – α_s measurement

TEEC measurement:

- In a good agreement with NLO pQCD
- Theoretical scale uncertainty dominate over experimental uncertainties
- Excellent compatibility between World Average and ATLAS jet-based measurements

ATLAS

 $\alpha_{s}(m_{Z}) = 0.1173 \pm 0.0010(exp.) +0.0063 \\ -0.0020(scale) \pm 0.0017(PDF) + 0.0002 (NPC)$

ICPPA 2015 Jiri Hejbal (on behalf of ATLAS collaboration)

05/10/2015

Experimental Uncertainty

Total Uncertainty PDG Total Uncertainty

ATLAS Energy Energy Correlations

ATLAS-CONF-2013-041 (2013)

Eur. Phys. J. C 72 (2012) 2041

Malaescu & Starovoitov ATLAS Inclusive jet

CERN-PH-EP-2015-177

ATLAS N₃₂

W+jets / Z+jets at 7 TeV

R-jets: ratio of W+jets and Z+jets

- Differential measurement for the first time up to four jets
- Observed discrepancy of 1.5σ at high jet multiplicities with SHERPA
- BlackHat+SHERPA is 1σ above data at high inclusive jet multiplicities

- Measurement with multiplicities up to seven associated jets and p_T of jets up 1 TeV
- Fixed-order predictions provide good description (BlackHat+SHERPA)
- Overall reasonable agreement with predictions is observed

Z+bjets at 7TeV

- Important background to ZH with H -> bb and BSM signatures
- Two schemes considered 4-flavour (4FNS) vs. 5FNS
- MCFM in five-flavour number scheme agrees with data within uncertainties
- aMC@NLO 4FNS describes better Z+2 b-jets, while 5FNS describes better Z+1 b-jet
- Shape of differential cross sections are in general well modeled with LO and NLO prediction

JHEP10(2014)141

ICPPA 2015 Jiri Hejbal (on behalf of ATLAS collaboration)

05/10/2015

W and Z production at 13 TeV

Measurement: total inclusive and charge-specific cross sections and W⁺/W⁻ and of W[±] / Z cross section ratio in leptonic channels e,μ

Ratio of measured cross sections benefits from the cancellation of some experimental uncertainties

Ratio R_{w/7} constraints strange-quark distribution

- measurement agrees with different PDF predictions within uncertainties
- Ratio $R_{W+/W-}$ sensitive to $u_{v} d_{v}$ valence-quark distribution at low x
 - significant scatter of different PDF predictions observed, the measurement agrees with PDFs which include LHC measurements from Run I

Z+jets at 13 TeV

- Preliminary measurement of the Z boson in association with up to four jets using 85 pb⁻¹ of data
- ► Z bosons is decaying to electron or muon pairs: $Z \rightarrow e^+ e^- and Z \rightarrow \mu^+ \mu^-$
- > Jets are definied by anti- k_T , R=0.4: $p_T > 30$ GeV, |y| < 2.5
- Measurement of fiducial cross sections and their ratios for successive jet multiplicities

Reasonable agreement between observed cross sections and predictions from Sherpa and MadGraph

ICPPA 2015	Jiri Heibal (on behalf of ATLAS collaboration)	05/10/2015	15 / 25
		00/10/2010	10720

WW->lvlv cross section at 8 TeV

- Total and fiducial WW production cross section measurements
- Important test of the non-Abelian structure of SM
- Cross section measurements are sensitive to anomalous triple gauge couplings (aTGC)
- Non-resonant WW production is an irreducible background process to Higgs boson studies

Backgrounds:

- Top, Drell-Yan, W+jets (all data-driven), other dibosons (MC based)
- Very hard selection-criteria on E_T^{miss} and jet-veto to suppress tt background

05/10/2015

WW->lvlv cross section at 8 TeV

- ▶ The individual channels are compatible within their uncertainties.
- The measured combined cross section differs by +2.1σ from the partial NNLO SM prediction computed using CT10 PDF using the standard PDF and scale uncertainties

 $\sigma_{WW}^{tot} = 71.4^{+1.2}_{-1.2}(stat) + 5.0_{-4.4}(syst) + 2.2_{-2.1}(lumi) \text{ pb}$ $\sigma_{WW}^{\text{predicted}} = 58.7^{+3.0}_{-2.7} \text{ pb}$

Compatible with full NNLO prediction at about 1σ

- New result from CMS (arXiv:1507.03268): measured total σ agree well with NNLO prediction
- Major difference: 1) H → WW process is subtracted as background
 2) pTWW-resummed calculation reweighting

 Otherwise fairly comparable

17 / 25

4-lepton production at 8 TeV

- Measurement of integrated and differencial cross sections in m(4l) and p_T(4l)
- Test of SM through interplay of QCD and EW effects for different production mechanisms

Selection:

- 4 high p_T isolated leptons
- Build same flavor, opp. charge pairs
- 50 GeV < m_{12} < 120 GeV; 12 GeV < m_{34} < 120 GeV

Background:

- Z+jets and tt (data driven)
- ZW, Zγ, Z+top, VVV, ZH and
- double Drell Yan (MC)

4-lepton production at 8 TeV

• Measurement of signal strength of non-resonant $gg \rightarrow 4I$ production:

$$\mu_{gg}$$
 = 2.4 ± 1.0(stat.) ± 0.5(syst.) ± 0.8(theory)

LH fit to data including non-ggZZ contribution (QCD NNLO and EW NLO) and background

 $\frac{\sigma(data)}{\sigma(g \, g \to 41; LO)}$

 $Z^{(*)}$

Overall good agreement between theory prediction and measurement of differential cross-section distributions of m₄₀

Measured channel specific cross sections in fiducial phase space

Z+2 jets production (VBF)

JHEP04(2014)031

- Inclusive Zjj production is dominated by the strong production process
- VBF process is of particular interest because of the similarity to the VBF production of a Higgs boson
- (strong) background template constrained by data-driven technique, electroweak production extracted in EW enriched region
- strong-production-only hypothesis rejected at > 5σ

 $\sigma_{\rm EW} = 54.7 \pm 4.6 \text{ (stat)}_{-10.4}^{+9.8} \text{ (syst)} \pm 1.5 \text{ (lumi) fb}$

 $\sigma_{\rm EW}^{\rm Powheg} = 46.1 \pm 0.2(\text{stat})^{+0.3}_{-0.2}(\text{scale}) \pm 0.8(\text{PDF}) \pm 0.5(\text{model}) \text{ fb}$

Electroweak WWjj production (VBS)

Key process to probe EW symmetry breaking

 VBS amplitude increases with Vs; without Higgs this would violate unitarity at ~ 1 TeV

Sensitivity to EWK increases by cutting on |Δy_{ii}| in addtion

ntion) 05/10/2015

ICPPA 2015 Jiri Hejbal (on behalf of ATLAS collaboration)

Electroweak WWjj production (VBS)

- measured cross-sections slightly higher but in agreement with theory prediction
- a total of 34 candidate events in VBS region
- first evidence for a VVVV vertex

Inclusive measurements:

$$\sigma^{\text{fid}} = 2.1 \pm 0.5(\text{stat}) \pm 0.3(\text{syst}) \text{ fb}$$

 $\sigma^{\text{Powheg}} = 1.52 \pm 0.11 \text{ fb}$

significance: 4.5σ (exp. 3.4σ)

VBS measurements:

 $\sigma^{\text{fid}} = 1.3 \pm 0.4(\text{stat}) \pm 0.2(\text{syst}) \text{ fb}$ $\sigma^{\text{Powheg}} = 0.95 \pm 0.06 \text{ fb}$ significance: 3.6σ (exp. 2.8σ)

$W\gamma\gamma$ production

- First evidence of triboson production
- Sensitive to (anomalous) quartic coupling

Signature:

- Isolated lepton + MET and 2 isolated photons

Background:

- Multijet background (data driven); e.g. Wγ + jets
- Prompt leptons (MC based); e.g. Zγ

Results:

ICPPA 2015

- Measurements in inclusive (N_{jet} ≥ 0) and exclusive region(N_{iet} = 0)
- Combined significance over background only > 3σ

$$\begin{split} \sigma^{\rm fid} &= 6.1^{+1.1}_{-1.0} \; ({\rm stat.}\;) \pm 1.2 \; ({\rm syst.}) \pm 0.2 \; ({\rm lumi.}) \; {\rm fb} & {\rm Inclusive} \\ \sigma^{\rm MCFM} &= 2.90 \pm 0.16 \; {\rm fb} & {\rm region} \\ \\ \sigma^{\rm fid} &= 2.9^{+0.8}_{-0.7} \; ({\rm stat.}\;)^{+1.0}_{-0.9} \; ({\rm syst.}) \pm 0.1 \; ({\rm lumi.}) \; {\rm fb} & {\rm Exclusive} \\ \sigma^{\rm MCFM} &= 1.88 \pm 0.20 \; {\rm fb} & {\rm region} \\ \end{split}$$

Jiri Hejbal (on behalf of ATLAS collaboration)

Phys. Rev. Lett. 115, 031802 (2015)

First ZZ events @ 13 TeV

- > Display of a ZZ candidate event from proton-proton collisions with LHC beams at a collision energy of 13 TeV.
- ▶ The first Z boson candidate has a mass of 94 GeV and p_T of 35 GeV

https://twiki.cern.ch/twiki/bin/view/AtlasPublic/EventDisplayRun2Collisions

- ATLAS successfully recorded ~ 5 fb⁻¹ 7TeV and ~21 fb⁻¹ 8 TeV pp collision data delivered by LHC during Run-I period
- ATLAS performed a wide range of SM physics measurements covering a variety of SM physics aspects: QCD, Electroweak, V+X, multibosons, jets physics:
 - Charged particle multiplicities first measurement at 13 TeV
 - Two photon scatering: γγ -> II
 - Inclusive, three-jet and four-jet cross section measurements
 - Extraction of QCD coupling constant from transverse energy-energy correlation
 - ▶ W a Z production in association with jets preliminary results at 13 TeV
 - Electroweak production of Zjj, sensitive to vector boson fusion
 - First evidence of vector boson scattering
 - First measurement of triboson (Wγγ) production in ATLAS
 - …and much more not shown in this presentation
- Measurements at 13TeV already underway!

BACKUP

Inclusive jet production at 7 TeV

- > Jets defined by anti- k_T algorithm (R=0.4, 0.6): 0.1 < p_T < 2 TeV
- Double-differential cross-sections as a function of transverse momentum and jet rapidity
- Data compared to fixed-order NLO pQCD (corrected for both perturbative effect and electroweak effect) as well as NLO ME+PS

ICPPA 2015 Jiri Hejbal (on behalf of ATLAS collaboration) 05/10/2015

Three jet production at 7 TeV

Eur. Phys. J. C75 (2015) 228

W+jets / Z+jets at 7 TeV

Eur. Phys. J. C (2014) 74: 3168

- Calculated "R-jets": ratio of W+jets to Z+jets production cross – sections
- More precise test of pQCD than individual V+jets
- Experimental uncertainties and non-pQCD effects are significantly canceled in the ratio
- Leptonic channels (e/μ)) of W/Z
- ▶ 7 TeV 4.6 fb⁻¹ full dataset
- Differential measurement for the first time up to four jets
- Comparison with NLO pQCD calculation, LO ME Monte Carlo generators done

W+jets / Z+jets at 7 TeV

Eur. Phys. J. C (2014) 74: 3168

- > The theoretical predictions describe the data fairly well within experimental uncertainties
- Observed discreapancy of 1.5σ at high jet multiplicities with SHERPA
- BlackHat+SHERPA is 1σ above data at high inclusive jet multiplicities (it is expected -> not all contributions for events with at least four jets are included)

ICPPA 2015 Jiri Hejbal (on behalf of ATLAS collaboration) 05/10/2015

W+jets production at 7 TeV

σ(W+N_{jets}) [pb]

10⁵

10

10³

10²

10

10⁻¹⊨

10

≥0

≥1

>2

10⁶ ATLAS

- Many exclusive and inclusive differential distributions compared to a variety of theory predictions at LO/NLO
- Measurement with multiplicities up to seven associated jets and p_{T} of jets up 1 TeV
- Fixed-order predictions provide good description (BlackHat+SHERPA)
- Overall reasonable agreement with predictions is observed

- Test of pQCD calculation in large kinematic range
- Background for many SM processes and BSM searches
- Fully leptonic final states (e/ μ) at \sqrt{s} = 7 TeV with 4.6fb⁻¹

Eur. Phys. J. C (2015) 75:82

ICPPA 2015 Jiri Hejbal (on behalf of ATLAS collaboration) 05/10/2015

W and Z production at 13 TeV

Measurement:

ATLAS-CONF-2015-039

- ▶ W → ev, W → µv, Z → e⁺e⁻, and Z → $\mu^+ \mu^-$ processes with int. lum. of ~ 85 pb⁻¹
- Total inclusive and charge-specific production cross sections
- Evaluation of W^+/W^- production and of W^\pm/Z production cross-section ratios

Backgrounds:

Single and double bosons, top (from MC) and multijets (template fit on m_r spectrum)

Cross-sections as a function of centre of mass energy well described by NNLO (QCD)

Combined fiducial cross section with different PDFs The experimental precision is already comparable to PDF

Wyy / WWjj aQGC

- First aQGC limits on α4, α5 parameters using measured cross-section in a VBS fiducial region (for notation see Phys.Rev. D22 (1980) 200)
- k-matrix unitarized

- First triboson aQGC limits of high dimension operators f_{T0}, a_C^W and a₀^W determined in jetexclusive region with M_{vv} > 300 GeV
- dipole-FF unitarized

Summary plot

Standard Model Production Cross Section Measurements Status: March 2015 σ [pb] 10^{11} -0-**ATLAS** Preliminary \mathbb{A} $\sqrt{s} = 7, 8 \text{ TeV}$ Run 1 10^{6} $0.1 < p_{\rm T} < 2 \,{\rm TeV}$ $0.3 < m_{ii} < 5 \text{ TeV}$ LHC pp $\sqrt{s} = 7$ TeV LHC pp $\sqrt{s} = 8 \text{ TeV}$ 10^{5} Ő Theory Theory 10^{4} *n_j* ≥ 0 **0** 35 pb⁻ **Observed** 4.5 – 4.9 fb⁻¹ Observed 20.3 fb⁻¹ 0 Δ 10^{3} $n_j \ge 1$ $n_j \ge 0$ $n_j \ge 0$ **م**_ $n_j \ge 2$,+X 95% CL 10² o_<u>^</u>____ 0 $n_i > 1$ total uppei $(\gamma\gamma, ZZ)$ limit $n_j \ge 3$ ▲ 13.0 fb⁻¹ 0 0 ggF 10^{1} 2.0 fb⁻¹ $H \rightarrow WW$ $n_i \ge 4$ 0 🗠 : ≥ 4 $n_i \ge 3$ 0 95% CL 0uppe 0 1 > 6 $n_i \ge 7$ VBF $n_i \ge 5$ 0 $H \rightarrow W M$ Ō 10^{-1} $n_i \ge 8$ 0 Δ $n_j \ge 6$ 0 Δ 0 $H \rightarrow \gamma \gamma$ 10^{-2} $n_i > 7$ Ó $n_j \ge 7$ $H \rightarrow ZZ \rightarrow 4\ell$ Δ 10^{-3} W_{γ} |WW+ Zγ $t\bar{t}W$ $t\bar{t}Z$ $t\bar{t}\gamma$ Zjj $W\gamma\gamma W^{\pm}W^{\pm}jjt_{s-chan}$ pp Jets Dijets W Ζ tt t_{t-chan} WW γγ Wt Н WΖ ΖZ WΖ EWK EWK R=0.4 R=0.4 |v|<3.0 |v|<3.0 fiducial fiducial fiducial total total fiducial total fiducial total total total fiducial fiducial fiducial total total fiducial fiducial fiducial fiducial total y*<3.0 semilept njet=0

ICPPA 2015 Jiri Hejbal (on behalf of ATLAS collaboration)

05/10/2015