ICPPA2015: International Conference on Particle Physics and Astrophysics

Recent Standard Model measurements

Milos Dordevic (CERN)

On behalf of the CMS collaboration

5-10 October 2015, Moscow, Russian Federation

Outline

Vector Boson Studies

- Z boson diff. σ in q_T and |y|
- Angular coefficients of Z boson
- DY forward-backward asymmetry
- FSR Z decay

Vector Boson + Jets Studies

- $\sigma(Z/\gamma^* + jets) / \sigma(\gamma + jets)$ ratio
- Production of Z boson with b jets
- EWK (VBF) W production σ

Multiboson Studies

- Zγ -> vvγ production σ and aTGC
- EWK Zy and aTGC search
- WW production σ and aTGC
- ZZ->2l2v and ZZ->4l combined aTGC

• Jet Physics Studies

- Inclusive jets at 2.76 TeV and ratio to 8 TeV
- Dijet azimuthal decorrelations
- Forward and small-x QCD Studies
 - VBF: EWK Z production
 - η distribution of charged hadrons at 13 TeV

Outline

Vector Boson Studies

Z boson diff. σ in q_T and |y| at 8 TeV

- Phys. Lett. B 749 (2015) 187 Test pQCD, gluon PDFs, important for ttbar, diboson, BSM searches 10² **⊂MS** 19.7 fb⁻¹ (8TeV dơ/dq_⊤∆|y| [pb/GeV] 0 < |y| < 2Data The Z boson is reconstructed based on its decay to a pair of muons FEWZ 10^{-2} Double diff. σ in 5 bins of |y| and inclusive, agree with FEWZ NNLO ⁼EWZ/Data $d\sigma/dq_{T}\Delta|y|$ [pb/GeV] Svstematic uncert. data 0 < |y| < 2Scale uncert. 10 - Data normalised to the inclusive cross section ---> MadGraph $\times K_{NNLC}$ wheg $\times K_{NNLO}$ <--- absolute double differential cross section 09 0.8^t 100 200 10⁻² q_{τ} [GeV] MC/Data_
 - Comparison with MadGraph and POWHEG, stat. uncert. very small
 - Deviations from data by 20% at the high q_{τ} (from both generators)
 - Exp. uncert. much smaller than current theory and PDF uncertainty

Powheg $\times K_{NNII}$ /Data

100

200

 q_{τ} [GeV]

0.8

MC/Data

Angular coefficients of Z bosons at 8TeV

- First measurement of these coeff. in pp collisions (Z->μμ)
- V-A boson-fermion couplings
- qq prod., but also qg Compton
- The Lam-Tung relation: $A_0 = A_2$
- Measured as func. of q_T and y
- Compared with MadGraph(LO), POWHEG (NLO), FEWZ (NNLO)

- Measured in 8 bins of q_T and 2 rapidity bins (|y| < 1 and 1 < |y| < 2.1) by fitting the ($\cos\theta^*, \phi^*$)
- MadGraph predicts higher A_4 as it calculates Θ_W without considering the radiative corrections
- A_0 and A_2 : Madgraph is better; at $q_T = 0$ the POWHEG is negative -> approx. shower matching
- Violation of the Lam-Tung relation (due to higher order calc.) : $A_0 > A_2$, in particular for high q_T

DY forward-backward asymmetry at 8 TeV

• Vector and axial-vector couplings in (SM) qq->Z/ γ^* ->l⁺l⁻

$$\frac{d\sigma}{d(\cos\theta)} = A(1+\cos^2\theta) + B\cos\theta \qquad \qquad A_{\rm FB} = \frac{\sigma_F - \sigma_B}{\sigma_F + \sigma_B}$$
$$\cos\theta_{\rm CS}^* = \frac{2(P_1^+P_2^- - P_1^-P_2^+)}{\sqrt{Q^2(Q^2 + Q_T^2)}} \qquad \qquad \cos\theta_{\rm CS}^* \to \frac{|P_z(\ell^+\ell^-)|}{P_z(\ell^+\ell^-)}\cos\theta_{\rm CS}^*$$

- The A_{FB} measured for 40 GeV < m_{II} < 2 TeV and |y| < 5
- Backgrounds: Z->ττ and QCDjj (low), ttbar (high mass)

M. Dordevic (CERN)

• Corrections for detector resolution, acceptance and FSR

• Good agreement with SM (POWHEG) in all |y| regions

FSR Z decay at 7 TeV

- 4.7 fb⁻¹ (7 TeV) Diff. σ for photons in the Z -> $\mu^+\mu^-\gamma$ decays dσ/d(ΔR) [pb] do/dE_T(^{\(\)}) [pb/GeV] CMS CMS POWHEG + Pythia Important for m(W), Z+y and BSM (with y) 10 $\mathbf{Z} \rightarrow \mu^{+}\mu^{-}\gamma$ 10 Data/Theor Backgrounds: non-prompt y, DY, tt, diboson Std. Dev. Std. Dev. 30 40 50 60 70 80 90 100 10 20 n
- Good agreement with POWHEG+PYTHIA prediction, discrepancies w.r.p. to data below 5%.

Small increase in ratio for $M_{\mu\mu} < 40 \text{ GeV}$

E_T [GeV]

Phys. Rev. D 91 (2015) 092012

 $\mathbf{Z} \rightarrow \mu^{+}\mu^{-}\gamma$

0.5

3-body mass distrib. is nearly symmetric

4.7 fb⁻¹ (7 TeV)

2.5

 $\Delta R_{\gamma\mu}$

1.5

POWHEG + Pythi

Vector Boson + Jets Studies

$\sigma(Z/\gamma^* + jets) / \sigma(\gamma + jets) ratio at 8 TeV$

- Important for FS with hard jets and large E^{miss} (SUSY M_{T2}) JHEP10(2012)018
- Z->vv+jets background modeled using measured γ+jets scaled by the ratio of Z->vv+jets to γ+jets (from the MC)
- Measured (Z->ee, $\mu\mu$) ratio can reduce the uncertainties
- Small m_z effects for high p_T^V and LO, the is ratio constant 19.7 fb⁻¹ (8 TeV)

MadGraph and BlackHat above data by 20% at high p_T

Simulations reproduce better the shape of the ratio of p_T^Z to p_T^γ than the shapes of the individual distributions

Production of Z boson with b jets at 8 TeV

- Important background for Higgs and BSM searches
- Z(1b) diff. σ in b-jet p_T and $|\eta|$, Z p_T , H_T and $\Delta \phi_{Zb}$
- 4FS: shape better for soft b-jets, scale off by 20%
- Diff. σ ratio between Z+b and Z+jets also measured

• Z(2b) diff. σ in various kinematic variables: 1st and 2nd b-jet p_T, Z p_T, $\Delta \phi_{bb}$, ΔR_{bb} , ΔR_{Zb}^{min} , A_{Zbb} , m_{bb} , m_{Zbb}

$$A_{Zbb} = \frac{(\Delta R_{Zb}^{max} - \Delta R_{Zb}^{min})}{(\Delta R_{Zb}^{max} + \Delta R_{Zb}^{min})}$$

<--- indirect test of pQCD

Generally, good agreement within the uncertainties

EWK (VBF) W production σ at 8 TeV

• Unbinned max. likelihood fit to the m_{jj} to extract signal

 $\sigma_{meas} = 0.42 \pm 0.04 \text{ (stat.)} \pm 0.09 \text{ (syst.)} \pm 0.01 \text{ (lumi.) pb}$ $\sigma_{th} = 0.50 \pm 0.02 \text{ (scale)} \pm 0.09 \text{ (PDF) pb} \text{ (MG+PYTHIA6)}$

BDT Discriminator

800

600

400

200

Data-MC uncertainty

Multiboson Studies

$Z\gamma \rightarrow vv\gamma$ production σ and aTGCs

Important test of EWK sector of SM, sensitive to ZZv and Zvv

19.6 fb⁻¹ (8 TeV)

The σ measured in $E_T^{miss} > 140$ GeV, $E_T^{\gamma} > 145$ GeV, $|\eta^{\gamma}| < 1.44$:

 $\sigma_{meas} = 52.7 \pm 2.1 \text{ (stat.)} \pm 6.4 \text{ (syst.)} \pm 1.4 \text{ (lumi.) pb}$

- Lorentz- and gauge-invariant ZVy vertex, four parameters h_i^V
- E_{t}^{γ} spectrum to set aTGC limits using the likelihood formalism

Coupling	h_3 Lower limit 10^{-3}	h_3 Upper Limit 10^{-3}	h_4 Lower limit 10^{-6}	h_4 Upper Limit 10 ⁻⁶
Ζγγ	-1.12	0.95	-3.80	4.35
$ZZ\gamma$	-1.50	1.64	-3.96	4.59

The most stringent limits on neutral trilinear gauge couplings

Evidence for EWK Zy and aTGC search at 8 TeV

SMP-14-018

600

800

19.7 fb⁻¹ (8TeV) el channe

Zγ + Jets

Тор EWK Zγ+2Jets Systematic Uncertainty

Fake Photon

1000

1200

M_{ii} (GeV)

 $M_{Z\gamma}$ (GeV) M. Dordevic (CERN)

W⁺W⁻ production σ and aTGC at 8 TeV

- W⁺W⁻ has the largest cross section of all di-boson processes
- CERN LHC: qq->WW dominant, gg->WW only 3%, (H->WW)
- Two high p_T leptons, large E_t^{miss} and zero or one high p_T jet

 σ_{meas} = 60.1 ± 0.9 (stat) ± 3.2 (exp) ±3.1 (lumi.) pb σ_{NNLO} = 59.8^{+1.3}_{-1.1} pb

• Normalized diff. σ as a function of various kinematic variables

- Dim6 EFT ---> aTGC limits
- WWZ, WWγ -> no evidence

• Improved measurement of the coupling constant c_{WWW}/Λ^2

Coupling constant	This result	This result 95% interval	World average
	(TeV^{-2})	$({\rm TeV}^{-2})$	(TeV^{-2})
c_{WWW}/Λ^2	$0.1^{+3.2}_{-3.2}$	[-5.7, 5.9]	-5.5 ± 4.8 (from λ_{γ})
c_W/Λ^2	$-3.6^{+5.0}_{-4.5}$	[-11.4, 5.4]	$-3.9^{+3.9}_{-4.8}$ (from g_1^Z)
c_B/Λ^2	$-3.2^{+15.0}_{-14.5}$	[-29.2, 23.9]	$-1.7^{+13.6}_{-13.9}$ (from κ_{γ} and g_{1}^{Z})

M. Dordevic (CERN)

\geq ZZ -> 2l2v σ and combined aTGC limits at 8 TeV

- BR is 6x larger than ZZ->4l, large backgrounds (DY, WW, ttbar)
- MET reconstruction is crucial, distinctive w.r.p. to DY process
- Reduced MET variable, previously used at D0 & OPAL searches

- NLO EW corrections to SM ZZ->4l included, same as in 2l2v
- Combined results improve sensitivity of individual channels

Dataset	f_4^Z	f_4^γ	f_5^Z	f_5^{γ}
$7 \mathrm{TeV}, 4\ell$	[-0.010; 0.011]	[-0.012; 0.013]	[-0.011; 0.011]	[-0.013; 0.013]
7 TeV, $2\ell 2\nu$	[-0.010; 0.011]	[-0.012; 0.013]	[-0.010; 0.010]	[-0.013; 0.013]
8 TeV, 4ℓ	[-0.0041; 0.0044]	[-0.0052; 0.0048]	[-0.0041; 0.0040]	[-0.0048; 0.0045]
8 TeV, $2\ell 2\nu$	[-0.0032; 0.0037]	[-0.0043; 0.0037]	[-0.0032; 0.0034]	[-0.0038; 0.0043]
Combined	[-0.0021; 0.0026]	[-0.0030; 0.0026]	[-0.0022; 0.0023]	[-0.0026; 0.0027]
Expected $(4\ell \text{ and } 2\ell 2\nu, 7 \text{ and } 8 \text{ TeV})$	[-0.0036; 0.0039]	[-0.0045; 0.0041]	[-0.0036; 0.0036]	[-0.0042; 0.0043]

M. Dordevic (CERN)

7 October 2015, ICPPA2015

Jet Physics Studies

Inclusive jet production at 2.76 TeV and ratio with 8 TeV

M. Dordevic (CERN)

Dijet azimuthal decorrelations at 8 TeV

- CMS-PAS-SMP-14-015 19.7 fb⁻¹ (8 TeV) pQCD(LO): Two partons balanced in p_{T} -> back-to back rad⁻¹ Pythia6 Z2' 10¹⁷ CMS Herwig++ Preliminarv vthia8 4C adGraph + Pythia6 Z2 NP effects of MPI have only mild perturbation: $\Delta \phi \approx \pi$ Powhea + Pythia6 72 σ_{Dijet} 10 10 3^{rd} high p_{τ} jet leads to decorrelation in azimuthal angle 10° If more than 3 jets are produced, $\Delta \phi$ can approach zero 10 10 (many exp. and th. uncert. are reduced) $\overline{\sigma_{\text{Dijet}}} \, \overline{d\Delta \phi_{\text{Dijet}}}$ 10³ Compared to pQCD prediction for 3-jet up to 4 partons 10
- The NLO for 2/3 π < $\Delta \phi$ < π and LO for $\pi/2$ < $\Delta \phi$ < 2 $\pi/3$
- 7 p_T^{max} ranges and 5 different MC generators compared
- Overestimate from PYTHIA6, HERWIG++ and POWHEG, better agreement from PYTHIA8

10

 $\pi/6$

 $\pi/3$

 $\pi/2$

 $2\pi/3$

 $5\pi/6$

 $\Delta \phi_{\text{Dijr}}$

(rad)

• Overall very good description of data with (multijet improved) MadGraph with PYTHIA6

Forward and small-x QCD Studies

VBF : EWK Z production

- Zjj production is a mixture of EW and strong (ref: DY Zjj)
- EWK Zjj signal characterized by a large $\Delta\eta_{jj}$ and large M_{jj}
- Part of more general studies of VBS and VBF processes
- Two types of jets: "jet-plus-track" and "particle-flow"

Events

10³

10²

10

Data

(Data-BG)

BG

analysis A

- Multivariate analyses used to provide separation of EW Zjj and DY Zjj from the inclusive Iljj spectrum:
 - A. $\mu\mu$ & ee (PF jets), dijet and Z kinematics as input to the MVA
 - B. $\mu\mu$ (JPT jets), BDT: full kinematics of tagging jets and Z boson
 - C. $\mu\mu$ & ee (PF jets), only dijet-related variables as input to MVA
- Measured signal cross section is in a good agreement with the SM prediction at leading order (LO):

 $\sigma(\mathrm{EW}\,\ell\ell\mathrm{jj}) = 174\pm15\,\mathrm{(stat)}\pm40\,\mathrm{(syst)}\,\mathrm{fb} = 174\pm42\,\mathrm{(total)}\,\mathrm{fb} \qquad \sigma_{\mathrm{LO}}(\mathrm{EW}\,\ell\ell\mathrm{jj}) \,=\,208\pm18\,\mathrm{fb}$

19.7 fb⁻¹ (8 TeV)

Data

Top

BDT output

EW Zjj EW Zjj DY Zii

η distribution of charged hadrons at 13 TeV

- dN_{ch}/dη: first publication at 13 TeV, zero magnetic field
- Dependence on Vs reflect the roles of soft/hard scatter
- Low-intensity beam, 0.2-5% p-p prob. per bunch cross
- Two reconstruction techniques, based on hits in Pixel :
 - tracklet method (using hit pairs), bkg. data driven
 - track method (using hit triplets), additional hit req.
- Agreement < 2% (central) and < 3% (forward) η region

 $dN_{ch}/d\eta_{|\eta<0.5|}$ = 5.49 ± 0.01 (stat) ± 0.17 (syst)

- Comparison in √s with the ISR, UA5, PHOBOS and ALICE
- Central region consistent with PYTHIA8 and EPOS LHC
- Wider η range is better described by EPOS generator

Summary

- Recent Standard Model results from CMS using the LHC Run 1 data have given us possibility to perform extensive tests of the electroweak and strong interactions
- Studies of the vector boson production showed unprecedented precision and enabled testing of the pQCD over large kinematic region that has never been probed before
- Measurements of the vector boson plus jets production were improved, various MC generators have confirmed predictive capabilities of pQCD; new PDF constraints
- The multiboson studies resulted with new aTGC/aQCG limits, many are world-leading
- Jet production measured in the extended phase space, reduced PDF uncertainties
- Interesting times ahead as the LHC Run 2 is ongoing, with the energy of 13 TeV, higher pileup and more challenging trigger conditions, new results there already

Backup

• Ratio of (double) diff. σ at 7 and 8 TeV -> NNLO QCD, PDFs

1000

m [GeV]

500

FEWZ, NNLO CT10

50

100

200

0.4

20

Z boson diff. σ in q_T and |y| at 8 TeV

Phys. Lett. B 749 (2015) 187

M. Dordevic (CERN)

7 October 2015, ICPPA2015

Β4

DY forward-backward asymmetry at 8 TeV

CMS-SMP-14-004

POWHEG

Background

0.6

0.8

 $\cos\theta_{CS}$

V boson: Z angular vars/coeff

arXiv.1504.03512 Submitted to PLB

(Double) diff. Z+jets σ at 8 TeV

- Test pQCD, background for ttbar, VBF, WW, Higgs, SUSY
- Diff. σ measured as function of N_{jet}(exc./inc.), p_T, H_T, |η|
- MadGraph: p_{T,iet 1} excess in 150-450 GeV, as was in 7 TeV
- SHERPA 2: slightly harder spect., diff. prediction at low p_T

- MadGraph: 10% disagr. for p_{T,jet 1} < 100 GeV</p>
- SHERPA 2: good agr., disrc. in few p_{T,jet 1} bins

(Double) diff. Z+jets σ at 8 TeV

CMS PAS SMP-14-009

CMS PAS SMP-13-007

Production of Z boson with b jets at 8 TeV

CMS-PAS-SMP-14-010

EWK (VBF) W production σ at 8 TeV

CMS-SMP-13-012

Evidence for EWK Zy and aTGC search at 8 TeV

SMP-14-018

August 2015	CMS		Channel	Limits	∫ <i>L</i> dt	s
f_{M0}/Λ^4	1		wvγ	-7.7e+01 - 8.1e+01	19.3 fb ⁻¹	8 TeV
	H		EWK Z y+2Jets	-7.1e+01 - 7.5e+01	19.7 fb ⁻¹	8 TeV
	$\vdash - \dashv$		ss WW	-3.3e+01 - 3.2e+01	19.4 fb ⁻¹	8 TeV
	H-++		γγ→WW	-1.5e+01 - 1.5e+01	5.1 fb ⁻¹	7 TeV
	Н		γγ→WW	-4.6e+00 - 4.6e+00	19.7 fb ⁻¹	8 TeV
f_{M1}/Λ^4	F		wvγ	-1.3e+02 - 1.2e+02	19.3 fb ⁻¹	8 TeV
⊢			EWK Z y+2Jets	-1.9e+02 - 1.8e+02	19.7 fb ⁻¹	8 TeV
	1 H		ss WW	-4.4e+01 - 4.7e+01	19.4 fb ⁻¹	8 TeV
	······		γγ→WW	-5.7e+01 - 5.7e+01	5.1 fb ⁻¹	7 TeV
	HH		γγ→WW	-1.7e+01 - 1.7e+01	19.7 fb ⁻¹	8 TeV
f_{M2}/Λ^4	⊢		EWK Z y+2Jets	-3.2e+01 - 3.1e+01	19.7 fb ⁻¹	8 TeV
f_{M3}^{4}/Λ^{4}	I		EWK Z y+2Jets	-5.8e+01 - 5.9e+01	19.7 fb ⁻¹	8 TeV
-200	0	200	a	400 QGC Limits at	600 95% CL (TeV -4

August 2015					
	AILAS	Channel	Limits	∫ <i>L</i> dt	s
f_{T0}^{4}/Λ^{4}	······	Wγγ	-9.0e+01 - 9.0e+01	20.3 fb ⁻¹	8 TeV
	1	WVγ	-2.5e+01 - 2.4e+01	19.3 fb ⁻¹	8 TeV
	н	EWK Z y+2Jets	-3.8e+00 - 3.4e+00	19.7 fb ⁻¹	8 TeV
	H	ss WW	-4.2e+00 - 4.6e+00	19.4 fb ⁻¹	8 TeV
f_{T1}/Λ^4	н	EWK Z y+2Jets	-4.4e+00 - 4.4e+00	19.7 fb ⁻¹	8 TeV
	Н	ss WW	-2.1e+00 - 2.4e+00	19.4 fb ⁻¹	8 TeV
f_{T2}/Λ^4	H	EWK Z y+2Jets	-9.9e+00 - 9.0e+00	19.7 fb ⁻¹	8 TeV
	leed.	ss WW	-5.9e+00 - 7.1e+00	19.4 fb ⁻¹	8 TeV
f_{T8}/Λ^4	Н	EWK Z y+2Jets	-1.8e+00 - 1.8e+00	19.7 fb ⁻¹	8 TeV
f_{T9}/Λ^4	н	EWK Z y+2Jets	-4.0e+00 - 4.0e+00	19.7 fb ⁻¹	8 TeV
 -10	0 0 10	0	200	300	-4
		aC	QGC Limits at 95	5% CL (TeV 📑

W⁺W⁻ production σ and aTGC at 8 TeV

arXiv:1507.03268

19.4 fb⁻¹ (8 TeV)

3

2.5

 $\Delta \phi_{\ell\ell}$ (rad)

2

Dijet azimuthal decorrelations at 8 TeV

M. Dordevic (CERN)

Jets: Running α_s summary

Eur. Phys. J. C 75 (2015) 288

η distribution of charged hadrons at 13 TeV

arXiv:1507.05915, Subm. to Phys. Lett. B

