Upgrade of the ALICE Inner Tracking System (ITS)

Svetlana Kushpil

on behalf of the ALICE ITS Collaboration

Nuclear Physics Institute of the CAS
Řež, Czech Republic

ICPPA 2015
International Conference on Particle Physics and Astrophysics, October 5-10, 2015, Moscow, Russia
ALICE is a heavy-ion experiment at the CERN LHC with a main goal to study strongly interacting matter, in particular the properties of the Quark-Gluon Plasma, using Pb-Pb, p-Pb and pp collisions.

ALICE consists of a central barrel, a forward muon spectrometer, several dedicated detectors for triggering and event characterization.
ALICE upgrade

Motivation

High precision measurements of rare probes at low p_T, which cannot be selected by a hardware trigger

Target

Recorded luminosity of 10 nb^{-1} in Pb-Pb (plus pp and p-Pb data)

- Increased statistics by a factor of 100 compared to LHC Run 1 and 2 (2009 - 18)
- Improved vertexing, tracking and read-out rate capabilities

Upgrades (LHC Long Shutdown 2 – 2019-20)

ALICE readout (of several detectors) and online systems

- Read out all Pb-Pb interactions at a maximum rate of 50 kHz with a minimum bias trigger
- Perform online data reduction

New silicon trackers: Inner Tracking System (mid-rapidity), Muon Forward Tracker (forward rapidity)
Requirements for ALICE ITS upgrade

Improve impact parameter resolution (≈ factor of 3 (6) in r-φ (z) at 500 MeV/c)

First layer closer to interaction point: \(r_0 = 39 \text{ mm} \rightarrow 22 \text{ mm} \)

Smaller beam pipe radius: \(29 \text{ mm} \rightarrow 18.2 \text{ mm} \)

Reduce \(X / X_0 / \) layer: \(1.14 \% \rightarrow 0.3 \% \) (inner layers)

Smaller pixel size: \(50 \mu \text{m} \times 425 \mu \text{m} \rightarrow 28 \mu \text{m} \times 28 \mu \text{m} \)

Improve tracking efficiency and \(p_T \) resolution at low \(p_T \)

Increase the number of layers \(6 \rightarrow 7 \)

All layers pixel chips

Fast readout: \(50 \text{ kHz} \) in Pb-Pb, \(200 \text{ kHz} \) in pp (currently \(1 \text{ kHz} \))

Easier maintenance: replacement of faulty detector components during the yearly LHC technical stop
Expected performance of new ITS

Pointing resolution

~ 40 μm at $p_T = 500$ MeV/c

Tracking efficiency
Requirements for the ITS upgrade

7 layers of pixel sensors
\((r = 22 - 400 \text{ mm})\)

10 m\(^2\) of silicon with
12.5 Gpixels

\(|\eta| < 1.22\) for tracks from
90% of the most luminous region

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Inner barrel</th>
<th>Outer barrel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Silicon thickness</td>
<td>50 \text{ (\mu)m}</td>
<td>10 \text{ (\mu)m}</td>
</tr>
<tr>
<td>Spatial resolution</td>
<td>5 \text{ (\mu)m}</td>
<td>10 \text{ (\mu)m}</td>
</tr>
<tr>
<td>Power density</td>
<td>< 300 mW/cm(^2)</td>
<td>< 100 mW/cm(^2)</td>
</tr>
<tr>
<td>Event resolution</td>
<td>< 30 \text{(\mu)s}</td>
<td></td>
</tr>
<tr>
<td>Detection efficiency</td>
<td>> 99%</td>
<td></td>
</tr>
<tr>
<td>Fake hit rate</td>
<td>< 10(^{-5}) per event per pixel</td>
<td></td>
</tr>
<tr>
<td>Average track density</td>
<td>15 - 35 \text{ cm}^{-2}</td>
<td>0.1 - 1 \text{ cm}^{-2}</td>
</tr>
<tr>
<td>TID radiation *</td>
<td>2700 \text{ krad}</td>
<td>100 \text{ krad}</td>
</tr>
<tr>
<td>NIEL radiation *</td>
<td>1.7 \times 10^{13} \text{ 1 MeV n}_{eq}/\text{cm}^2</td>
<td>10^{12} \text{ 1 MeV n}_{eq}/\text{cm}^2</td>
</tr>
</tbody>
</table>

=> well suited for Monolithic Active Pixel Sensors

* including a safety factor of 10
Choice of sensor technology

Monolithic Active Pixel Sensors (MAPS) using Tower Jazz 0.18 μm CMOS imaging process:

- Very thin sensors
- Very high granularity
- Large area to cover
- Modest radiation levels

Parameter comparison for mainstream MAPS architectures

<table>
<thead>
<tr>
<th></th>
<th>ALPIDE</th>
<th>MISTRAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pixel pitch</td>
<td>28 μm x 28 μm</td>
<td>36 μm x 64 μm</td>
</tr>
<tr>
<td>Event time</td>
<td>$< 2 \mu s$</td>
<td>$\sim 20 \mu s$</td>
</tr>
<tr>
<td>resolution</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Power consumption</td>
<td>39 mW/cm²</td>
<td>97 mW/cm²</td>
</tr>
</tbody>
</table>

Baseline solution \rightarrow ALPIDE

Both architectures have the same dimensions, identical physical and electrical interfaces.
Pixel sensor characterizations

Laboratory

- **Noise and threshold** scans
- **Radioactive source** measurements
- **Noise occupancy** measurements

Intensive efforts in a number of institutes to characterize pixel sensors

Test beam

- Tracking by a stack of 3 + 3 pALPIDE-1 chip around Device Under Test

Readout and analysis is done using the EUDAQ/EUTelescope framework (created by DESY)

- **Several campaigns** from 60 MeV to 120 GeV (PS, SPS, DESY, BTF, PAL)

Measurement of detection efficiency and spatial resolution

Example of pALPIDE test setup
Selected performance: Efficiency & Fake-Hit rate

Reverse substrate bias $V_{BB} = -6$ V, epitaxial layer and spacing comparison

- **Project goal**: Detection efficiency for MIP increases with increasing epitaxial layer thickness
- **Goal of the project**: Efficiency $> 99\%$
 - Fate-Hit rate $< 10^{-5}$ per pixel and event
- **Measurements meet the requirements**
- **Detection efficiency improves with larger back bias voltage**

Reverse substrate bias comparison, 30 µm epitaxial layer, 4 µm spacing

- Measurements meet the requirements
Irradiated prototypes: Efficiency & Position resolution

Reverse substrate bias VBB = −6 V, 25 µm epitaxial layer, 2 µm spacing

- Deterioration of the detection efficiency & position resolution is tolerable up to the maximal expected dose

Reverse substrate bias VBB = −6 V, 30 µm epitaxial layer, 4 µm spacing

- Cluster size is not affected by radiation

Project goal
Summary and outlook

- The **Inner Tracking System** of ALICE will be replaced during the second long LHC shutdown (2019/20)

- 7 layers of monolithic active **pixel sensors** will be used

- Expected track impact parameter resolution, tracking resolution and p_T resolution at low p_T will improve significantly

- First full scale prototypes show **good performance** and large operational margin

- Project is advancing according to schedule

![Timeline Diagram](image)
Backup slides
Pixel Specifications

Pixel choice: Monolithic Active Pixel Sensors (MAPS) using Tower Jazz 0.18 μm

- Chip size: 15 mm x 30 mm
- Pixel pitch ~ 30 μm
- Si thickness: 50 μm
- Spatial resolution ~ 5 μm
- Power density < 100 mW/cm²
- Integration time < 30 μs
- Fake-hit rate < 10⁻⁵ per pixel per event
Performance Example

pALPIDEfs: first full scale prototype of ALPIDE, pixel size: 28 x 28 mm²

Sector 3, \(V_{\text{casn}} = 150\)

- **Cluster size is consistent for data, measured at Frascati & on PS**
- **Cluster size does not depend on multiplicity**
- **20 most noisy pixels masked**
- **Wide operating range with efficiency ~99% and noise occupancy < 10^{-5} /event/pixel**
- **Noise occupancy increases after irradiation**

Beam tests at Frascati (450 MeV e-) & on PS (6 GeV π-)