Upgrade of the ALICE Inner Tracking System (ITS)

Svetlana Kushpil

on behalf of the ALICE ITS Collaboration

Nuclear Physics Institute of the CAS Řež, Czech Republic

ALICE & present ITS

ALICE is a heavy-ion experiment at the CERN LHC with a main goal to study strongly interacting matter, in particular the properties of the Quark-Gluon Plasma, using Pb-Pb, p-Pb and pp collisions .

ALICE consists of

a central barrel, a forward muon spectrometer,

several dedicated detectors for triggering and event characterization.

ALICE upgrade

Motivation

High precision measurements of rare probes at low $\textbf{p}_{_{\!T}}$, which cannot be selected by a hardware trigger

Target

Recorded luminosity of 10 nb^{-1} in Pb-Pb (plus pp and p-Pb data)

Increased statistics by a factor of 100 compared to LHC Run 1 and 2 (2009 - 18)

Improved vertexing, tracking and read-out rate capabilities

Upgrades (LHC Long Shutdown 2 – 2019-20)

ALICE readout (of several detectors) and online systems

Read out all Pb-Pb interactions at a maximum rate of 50 kHz with a minimum bias trigger

Perform online data reduction

New silicon trackers: Inner Tracking System (mid-rapidity), Muon Forward Tracker (forward rapidity) 3

Requirements for ALICE ITS upgrade

Improve impact parameter resolution (\approx factor of **3 (6)** in r- ϕ (z) at 500 MeV/c)

First layer closer to interaction point: $r_0 = 39 \text{ mm} \rightarrow 22 \text{ mm}$

Smaller beam pipe radius: 29 mm \rightarrow 18.2 mm

Reduce X / X₀/ layer: $1.14\% \rightarrow 0.3\%$ (inner layers)

Smaller pixel size: 50 μ m x 425 μ m \rightarrow 28 μ m x 28 μ m

Improve tracking efficiency and p_{\perp} resolution at low p_{\perp}

Increase the number of layers $6 \rightarrow 7$

All layers pixel chips

Fast readout : 50 kHz in Pb-Pb, 200 kHz in pp (currently 1 kHz)

Easier maintenance: replacement of faulty detector components during the yearly LHC technical stop

Expected performance of new ITS

Pointing resolution

Tracking efficiency

~ 40 μ m at p_T = 500 MeV/c

Requirements for the ITS upgrade

7 layers of pixel sensors (r = 22 - 400 mm)

10 m² of silicon with **12.5 Gpixels**

η < 1.22 for tracks from 90% of the most luminous region

Parameter	Inner barrel	Outer barrel
Silicon thickness	50µm	
Spatial resolution	5µm	10µm
Power density	$<$ 300 mW/cm 2	$< 100 \ \mathrm{mW/cm^2}$
Event resolution	$<$ 30 μ s	
Detection efficiency	> 99%	
Fake hit rate	$< 10^{-5}$ per event per pixel	
Average track density	$15 - 35 \text{ cm}^{-2}$	$0.1 - 1 \text{ cm}^{-2}$
TID radiation *	2700 krad	100 krad
NIEL radiation *	1.7x10 ¹³ 1 MeV n _{eq} /cm ²	10 ¹² 1 MeV n _{eq} /cm ²

=> well suited for Monolithic Active Pixel Sensors

* including a safety factor of 10

Choice of sensor technology

Monolithic Active Pixel Sensors (MAPS) using Tower Jazz 0.18 μm CMOS imaging process :

Very thin sensors Very high granularity Large area to cover Modest radiation levels

Parameter comparison for mainstream MAPS architectures

ALPIDE MISTRAL

Pixel pitch	28 μm Χ 28 μm	36 μm x 64 μm
Event time resolution	< 2 μs	~ 20 μs
Power consumption	39 mW/cm ²	97 mW/cm ²

Baseline solution \rightarrow ALPIDE

Both architectures have the same dimensions, identical physical and electrical interfaces

Pixel sensor characterizations

Laboratory

Noise and threshold scans

Radioactive source measurements

Noise occupancy measurements

Intensive efforts in **a number of institutes** to characterize pixel sensors

Example of pALPIDE test setup

Test beam

Tracking by a stack of **3 + 3** pALPIDE-1 chip around Device Under Test

Readout and analysis is done using the EUDAQ/EUTelescope framework (created by DESY)

Several campaigns from 60 MeV to 120 GeV (PS, SPS, DESY, BTF, PAL)

Measurement of **detection efficiency** and **spatial resolution**

Selected performance : Efficiency & Fake-Hit rate

Reverse substrate bias VBB = -6 V, epitaxial layer and spacing comparison

Irradiated prototypes : Efficiency & Position resolution

Summary and outlook

- The Inner Tracking System of ALICE will be replaced during the second long LHC shutdown (2019/20)
- 7 layers of monolithic active pixel sensors will be used
- Expected track impact parameter resolution, tracking resolution and p_{τ} resolution at low p_{τ} will improve significantly
- First full scale prototypes show good performance and large operational
- Project is advancing according to schedule

margin

Backup slides

Pixel Specifications

Pixel choice: Monolithic Active Pixel Sensors (MAPS) using Tower Jazz 0.18 μ m

Schematic cross section

- Chip size: 15 mm x 30 mm
- Pixel pitch ~ 30 µm
- Si thickness: 50 μm
- Spatial resolution ~ 5 µm
- Power density < 100 mW/cm²
- Integration time < 30 μ s
- Fake-hit rate $< 10^{-5}$ per pixel per event

Performance Example

pALPIDEfs: first full scale prototype of ALPIDE, pixel size: 28 x 28 mm²

- Cluster size is consistent for data, measured at Frascati & on PS
- Cluster size does not depend on multiplicity
- 20 most noisy pixels masked
- Wide operating range with effciency ~99% and noise occupancy < 10⁻⁵ /event/pixel
- noise occupancy increases after irradiation