Trends in the design of microcircuits for frontend electronics (overview)

Yu.A.Volkov, I.I.Ilyushchenko

National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Kashirskoe highway 31, Moscow, 115409, Russia

October 10, 2015

The aim of the paper is to reveal the existing trends in the implementation of microelectronic units, collecting and processing the signals of multichannel radiation detectors in large-scale physical experiments.

The comparison of present-day microelectronic products of the above mentioned destination is carried out by their most important parameters, particularly:

number of channels N_{ch},

power consumption per channel P_{con},

input noise charge Q_n and

charge-to-voltage conversion factor K_{con}.

The technology of manufacture is also paid attention.

Table. Characteristics of Front-end Electronics ICs

Sour	Name of ASIC. Purpose and/or	N_{ch}	Technology	Q _n	K _{con}	P _{con}
ce	name of Project.					
[1]	SAS. STAR	16	CMOS, 1.2 mcm	600e +13e/pF,	16 mV/fC	60 mW
				tp=180 ns		
[2]	ASIC for PMT Hamamatsu H8500.	16	BiCMOS, 0.35mcm	4fC	-	11 mW
	In a facility for ion therapy					
[3]	FSDR16. CBM STS.	16	UMC	214e + 13.3e/pF,	91 mV/fC	10 mW
				tp=99 ns		
[4]	ASIC for the LAr TOF chamber.	16	CMOS, 180nm	1200e at 293K, 550e	4.725	6 mW
	MicroBooNE			at 77K,	mV/fC	
[5]	ADAM. LHC	32	CMOS	800e + 80e/pF, tp= 8	10 mV/fC	-
				ns		
[6]	APV3. CMS	32	CMOS, 1.2mcm	480e +43e/pF	_	2 mW
			HARRIS,			
[7]	SCT32A(B); silicon strip detector	32	BiCMOS, radiation-hard	620e+33e/pF	100	_
			DMILL		mV/fC	
[8]	ICECAL. calorimeter LHCb, up-	32	SiGe BiCMOS, 0.35mcm,	$1 nV/\sqrt{Hz}$	-	-
	dating		AMS			

Sour	Name of ASIC. Purpose and/or	N_{ch}	Technology	Qn	K _{con}	P _{con}
ce	name of Project.					
[9]	SPADIC 1.0	32	CMOS, 180 nm UMC,	387e + 11e/pF	-	3.8 mW
	for TRD. RICH					
[10]	SAMPA. Time-of-flight chamber	32	CMOS, 130 nm	536e, tp=80 ns	20	8 mW
			TSMC Esup. 1.25V		mV/fC	
[10]	ASIC SAMPA. Muon tracking	32	CMOS, 130 nm	950e, Cd=40pF	4 mV/fC	8 mW
	chamber		TSMC E=1.25V	1600e, Cd=80pF		
[11]	FABRIC. NA50 silicon detector	64	Bipolar Tektronix	476e +63e/pF,	100 mV/fC	1.3 mW
				tp= 15 ns		
[12]	MICROROC. Digital hadron	64	SiGe BiCMOS,	0.24fC,	2,38 mV/fC	3.7 mW
	calorimeter		0.35mcm, AMS	Cd = 80pF		
[13]	SPACIROC. EUSO-Balloon	64	SiGe BiCMOS,	100% registration of	Kgain	1 mW
	experiment,		0.35mcm	charges >50 fC	$=10^{6}$.	
[14]	VMM1. ATLAS small "wheel"	64	CMOS, 130 nm,	5000 e, Cd=200pF	9 mV/fC	-
			radiation hard IBM,			
[15]	APVD. CMS silicon tracker	128	CMOS, DMILL	450e+49e/pF, tp=50	108	1 mW
				ns	mV/MIP	
[16]	ALICE128C. ALICE silicon	128	CMOS, 1.2 mcm,	400e, tp = $(1.41.8)$	50	0.34 mW
	detector		AMS	us	mV/MIP	

[17]	SCT128B. HERA-B silicon	128	BiCMOS, radiation	559e+35e/pF	107 mV/fC	_
	detector		hard DMILL			
[18]	APV25. CMS tracking system	128	CMOS, 0.25 mcm,	430e+61e/pF,	—	2 mW
			Harris Semic. DMILL	tp=25ns		
[19]	HELIX128. HERA-B silicon	128	CMOS, 1.2 mcm	405e+76e/pF,	63	2 mW
	tracker			tp=50нс	mV/MIP	
[20]	HELIX128S-2.1. HERA-B	128	CMOS, 0.8 mcm,	33.6 e/pF,	45	_
			AMS	tp=(45100) ns	mV/MIP	
[21]	CAFÉ. LHC silicon tracker	128	Complementary	550e +33e/pF,	—	1.8 mW
			bipolar AT&T	tp=25ns		
[22]	ASIC for the CBM tracking	128	CMOS, 180 nm,	2000e,	50 mV/fC	2 mW
	system		UMC (Taiwan)	Cd<30pF		
[23]	Binary architecture CMS. SLHC	128	CMOS, 0.13 mcm	500e+64 e/pF,		50 mW
				tp = 20 ns		E=1,2V
[24]	CBC2. CMS microstrip tracker	128	CMOS, 130 nm,	800e	40 mV/fC	0,3 mW
			IBM			
[25]	Pasta – Front-end electronics	128	CMOS, 130 nm	600e	-	1 mW
	ASIC. PANDA					

Conclusion

1. The main way of improving the electrical and massdimensional characteristics of front-end electronics (FEE) units is their implementation in the form of multichannel ASICs.

2. Typical values of the basic parameters of present-day FEE ICs are as follows: P_{con} – units of mW per channel, Q_n – hundreds of electrons, K_{con} – tens of mV/fC.

3. The FEE ICs are most often found with the following numbers of channels: 16, 32, 64 and 128. Present-day technologies allow the manufacturer to create ICs with a greater number of channels, but, from the practical viewpoint (considering particularly the placement of ICs on a PCB, whereon the IC inputs should be connected to detector outputs), those greater numbers may not appear expedient.

4. Among the possible technologies the FEE ASIC designers prefer the one of CMOS, that allows them to minimize power consumption, cost and chip area in a much simpler way.

5. If quite recently the FEE equipment contained only analog electronics, nowadays a distinct trend is well observed to include in it some digital processing units.

6. Radiation hardness, that a long time was demanded predominantly for space-intended equipment, nowadays is more and more often requested for stationary equipment, especially when the latter is placed near the "beam zone" of accelerator.

This work was supported by the Ministry of Education and Science of the Russian Federation (grant no.14.A12.31.0002) in accordance with the RF government order no. 220.